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Abstract

The single qubit quantum teleportation (sender and receiver are Alice and Bob respectively) is

analyzed from the aspect of the quantum information theories. The various quantum entropies are

computed at each stage, which ensures the emergence of the entangled states in the intermediate

step. The mutual information S(B : C) becomes non-zero before performing quantum measure-

ment, which seems to be consistent to the original purpose of the quantum teleportation. It is

shown that if the teleported state |ψ〉 is near the computational basis, the quantum measurement

in C-system is dominantly responsible for the joint entropy S(A,C) at the final stage. If, however,

|ψ〉 is far from the computational basis, this dominant responsibility is moved into the quantum

measurement of system A. A possible extension of our results are briefly discussed.
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|ψ〉 = a|0〉 + b|1〉
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FIG. 1: Quantum circuit for teleporting a qubit |ψ〉. The two top lines represent Alice’s system

and the bottom line is Bob’s system.

I. INTRODUCTION

It is generally believed that Nature is governed by quantum mechanics[1]. Based on

this fact, Feynman suggested[2, 3] about three decades ago that the computer which obeys

the quantum mechanical law can be made in the future. Ten years later after Feynman

suggestion P. W. Shor[4] has shown that the computer Feynman pointed out, i.e. quantum

computer, enhances drastically the computational ability in certain mathematical problems.

Especially, Shor showed that the discrete logarithm and large integer factoring problems

can be computed within polynomial time in the quantum computer. Recently, this factoring

algorithm is experimentally realized in NMR[5] and optical[6] experiments. Since the efficient

factoring algorithm is highly important in modern cryptography, Shor’s factoring algorithm

supports a strong motivation on current flurry of activity in this subject. Furthermore, the

recent active research on quantum computer provides a deep understanding in quantum

mechanics, and as a result it yields a new branch of physics called quantum information[7].

Although the quantum computation and quantum information theories are important in

the aspect of industrial issue, they also gives an new insight in the purely theoretical aspects.

In theoretical physics, as well-known, one of the most important and long-standing problem

is how to understand and formulate the quantum gravity. The most important effect of the

quantum gravity, which still we do not fully understand, is an information loss problem in

black hole physics[8]. Recent development of the quantum information theories may shed

light on the new avenue to understand this highly important and fundamantal problems[9].

In this paper we would like to examine the quantum teleportation[10] from the viewpoint

of the quantum entropy called von Neumann entropy. The quantum circuit for the one

qubit teleportation is given in Fig. 1. The two top lines in Fig. 1 are Alice’s system and the
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bottom line is Bob’s system. The main purpose of the quantum teleportation is to send the

unknown quantum state |ψ〉 = a|0〉+b|1〉 from Alice to Bob. The state vector for each stage

before Alice performs quantum measurement can be easily read from Fig. 1 as following:

|CAB〉 =
1√
2

[a(|000〉 + |010〉) + b(|100〉 + |110〉)] (at stage 1) (1.1)

|CAB〉 =
1√
2

[a(|000〉 + |011〉) + b(|100〉 + |111〉)] (at stage 2)

|CAB〉 =
1√
2

[a(|000〉 + |011〉) + b(|101〉 + |110〉)] (at stage 3)

|CAB〉 =
1

2

[

a(|000〉 + |011〉 + |100〉+ |111〉)

+b(|001〉 + |010〉 − |101〉 − |110〉)
]

. (at stage 4)

The quantum teleportation is possible if one uses the various pecular properties of the EPR

maximally entangled states which have no counterpart in the classical channel. In fact we

can show that the state vector of the AB sub-system at stage “2” is

|AB〉 =
1√
2

(|00〉 + |11〉) (1.2)

which is one of four EPR states in two qubit system. After stage “4” Alice performs a

quantum measurement1 in the computational basis. Thus the measurement outcome should

be one of (C = 0, A = 0), (C = 0, A = 1), (C = 1, A = 0), and (C = 1, A = 1).

To complete the teleportation Alice should notify Bob of the measurement result via the

classical channel2. If Alice’s measurement result is (C = M1, A = M2), Bob should operate

ZM1XM2 to his state where

X =





0 1

1 0



 , Y =





0 −i
i 0



 , Z =





1 0

0 −1



 . (1.3)

Then, as a result, Bob’s state vector reduces to |B〉 = a|0〉 + b|1〉. Thus the state |ψ〉 is

completely teleported to Bob. This is a quantum algorithm for the single qubit quantum

teleportation.

The single qubit quantum teleportation is experimentally realized in optics[11, 12], nu-

clear magnetic resonance[13] and ion trap experiment[14]. More recently, the quantum algo-

1 The meters in Fig. 1 represent quantum measurement.
2 In Fig. 1 double lines represent the classical channel.
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rithm for the two qubit teleportation is developed[15] via the optimal POVM measurement

performed by Bob.

As stated above we would like to examine the single qubit quantum teleportation algo-

rithm in this paper by computing the various quantum entropies at all stages. This paper is

origanized as follows. In section II we compute the von Neumann entropies, joint entropies,

relative entropies, conditional entropies and mutual information at each stage before quan-

tum measurement. It is shown that the local Hadamard gate does not give any effect in

quantum entropy. The mutual information S(B : C) becomes non-zero at stage “3” and “4”.

This means that the partial information on |ψ〉 is moved to Bob, which is consistent with

the original purpose of the teleportation. Several conditional entropies become negative,

which indicates the appearance of the entangled states[7]. In section III we compute the

various quantum entropies at stage “5”, where Alice performed her measurement but still

has not informed Bob of her measurement result. This situation can be described differently

as following: although Alice performs her projective measurement, for some reason she lost

the record of her measurement result. Then it is physically reasonable to assume that the

density operator for the joint system CAB is the averaged value produced via quantum mea-

surement. It is shown that the joint and conditional entropies increase due to the projective

measurement while mutual information decreases. The physical reason for the decrease of

the mutual information is discussed in this section. In section IV we introduce two differ-

ent intermediate stages between stage “4” and “5” to examine the effect of the quantum

measurement on quantum entropy. In section V a brief conclusion is given.

II. SINGLE-QUBIT TELEPORTATION: BEFORE MEASUREMENT

In this section we would like to compute various quantities derived from von Neumann’s

entropy defined

S(ρ) ≡ −Tr (ρ log ρ) (2.1)

where ρ is a density operator of a given quantum system. Especially, in this section, we

consider only stage “1′′, “2′′, “3′′ and “4′′ in Fig. 1. The stage “5′′(stage after quantum mea-

surement performed by Alice) will be explored in the next section. Since the computational

technique for each stage is similar, we will show the calculational procedure explicitly only

at stage “3′′ and the results for each level will be summarized in Table I, II and III.
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Using Eq.(1.1) it is easy to show that the density operator ρCAB for the joint system

CAB becomes

ρCAB ≡ |CAB〉〈CAB| =
1

2







































|a|2 0 0 |a|2 0 ab∗ ab∗ 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

|a|2 0 0 |a|2 0 ab∗ ab∗ 0

0 0 0 0 0 0 0 0

a∗b 0 0 a∗b 0 |b|2 |b|2 0

a∗b 0 0 a∗b 0 |b|2 |b|2 0

0 0 0 0 0 0 0 0







































. (2.2)

Since ρCAB is pure state and von Neumann entropy for pure state is always zero[7], one can

conclude

S(C,A,B) = 0. (2.3)

Taking partial trace for Bob’s system, one can directly compute ρCA, the density operator

for the CA joint system, whose explicit expression is

ρCA = TrBρ
CAB =

1

2















|a|2 0 0 ab∗

0 |a|2 ab∗ 0

0 a∗b |b|2 0

a∗b 0 0 |b|2















. (2.4)

Since Tr(ρCA)2 = 1/2 6= 1, ρCA is a mixed state. It is easy to show that ρCA has eigenvalues

λCA = {1/2, 1/2, 0, 0}. Since von Neumann entropy equals to the classical Shannon entropy

if the eigenvalues of the density operator are regarded as the probability distribution, the

quantum entropy reduces to

S(C,A) ≡ −
∑

i

λi log λi = 1. (2.5)

By same way it is easy to show that ρCB = ρCA and

ρAB = TrCρ
CAB =

1

2















|a|2 0 0 |a|2

0 |b|2 |b|2 0

0 |b|2 |b|2 0

|a|2 0 0 |a|2















(2.6)
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with

S(C,B) = 1, S(A,B) = −|a|2 log |a|2 − |b|2 log |b|2. (2.7)

Tracing out again, one can derive the density operators for the single qubit systems

ρC =





|a|2 0

0 |b|2



 , ρA = ρB =
1

2





1 0

0 1



 (2.8)

with

S(C) = −|a|2 log |a|2 − |b|2 log |b|2, S(A) = S(B) = 1. (2.9)

Eq.(2.8) implies that ρA and ρB are completely mixed states.

state stage 1 stage 2 stage 3,4 stage 5

ρCAB (P,P) (P,E) (P,E) (M,E)

ρCA (P,P) (M,P) (M,E) (completely M,P)

ρCB (P,P) (M,P) (M,E) (M,E)

ρAB (P,P) (P,E) (M,E) (M,E)

ρC P P M completely M

ρA P completely M completely M completely M

ρB P completely M completely M completely M

Table I: The properties of the density operators at each stage. The P and M in first

position in parenthesis denote pure and mixed respectively. The P and E in second

position stand for product and entangled respectively.

Using the definitions of mutual information S(A : B) ≡ S(A) + S(B) − S(A,B) and

conditional entropy S(A|B) ≡ S(A,B) − S(B) one can compute the various quantities

summarized in Table II.

The relative entropy defined

S(ρ||σ) ≡ Tr (ρ log ρ) − Tr (ρ log σ) = −S(ρ) − Tr (ρ log σ) (2.10)

also can be computed explicitly. Using

log ρC =





log |a|2 0

0 log |b|2



 , log ρA = log ρB =





−1 0

0 −1



 , (2.11)
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one can easily show

S(ρC ||ρA) = S(ρC ||ρB) = 1 + |a|2 log |a|2 + |b|2 log |b|2 (2.12)

S(ρA||ρC) = S(ρB||ρC) = − log(2|a||b|)

S(ρA||ρB) = S(ρB||ρA) = 0.

The relative entropy for other stages is summarized at Table III. Table III shows that the

relative entropy is always non-negative, which is known as Klein’s inequality. Another point

Table III indicates is that the relative entropy sometimes becomes infinity due to log 0. This

is because of the non-trivial intersection of support of ρ with kernel3 of σ.

In order to check whether the states are entangled or not, we compare the tensor product

of the component states with the corresponding joint state. At stage “3” one can show easily

ρAB 6= ρA ⊗ ρB ρCA 6= ρC ⊗ ρA (2.13)

ρCB 6= ρC ⊗ ρB ρCAB 6= ρC ⊗ ρA ⊗ ρB

which indicates that all joint states are entangled at this stage. The answer of the question

whether the given states are entangled or product, and mixed or pure at each stage is

summarized at Table I. In Table I (P,E) means “pure and entangled” and (M,P) stands for

“mixed and product”. Therefore Table I shows that the quantum teleportation generally

converts “pure and product” at stage “1” to “mixed and entangled” at stage “4” for the

joint system and “pure” at stage “1” to “completely mixed” at stage “4” for single-qubit

component systems.

3 The support of a Hermitian operator A is the vector space spanned by the eigenvectors of A with non-zero

eigenvalues. The vector space spanned by the eigenvectors with zero eigenvalue is called kernel.
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entropy stage 1 stage 2 stage 3, 4 stage 5

S(A,B,C) 0 0 0 2

S(A) 0 1 1 1

S(B) 0 1 1 1

S(C) 0 0 −|a|2 log |a|2 − |b|2 log |b|2 1

S(A,B) 0 0 −|a|2 log |a|2 − |b|2 log |b|2 1 − |a|2 log |a|2 − |b|2 log |b|2

S(A,C) 0 1 1 2

S(B,C) 0 1 1 2 − 1
2
log(1 − u2) − u

2
log 1+u

1−u

S(A : B) 0 2 2 + |a|2 log |a|2 + |b|2 log |b|2 1 + |a|2 log |a|2 + |b|2 log |b|2

S(B : C) 0 0 −|a|2 log |a|2 − |b|2 log |b|2 1
2
log(1 − u2) + u

2
log 1+u

1−u

S(A : C) 0 0 −|a|2 log |a|2 − |b|2 log |b|2 0

S(A|B) 0 −1 −1 − |a|2 log |a|2 − |b|2 log |b|2 −|a|2 log |a|2 − |b|2 log |b|2

S(A|C) 0 1 1 + |a|2 log |a|2 + |b|2 log |b|2 1

S(B|C) 0 1 1 + |a|2 log |a|2 + |b|2 log |b|2 1 − 1
2
log(1 − u2) − u

2
log 1+u

1−u

S(B|A) 0 −1 −1 − |a|2 log |a|2 − |b|2 log |b|2 −|a|2 log |a|2 − |b|2 log |b|2

S(C|A) 0 0 0 1

S(C|B) 0 0 0 1 − 1
2
log(1 − u2) − u

2
log 1+u

1−u

Table II: Various quantum entropy at each stage (u ≡ ab∗ + a∗b).

relative entropy stage 1 stage 2 stage 3, 4 stage 5

S(ρC ||ρA) −1
2
(log 0)(1 − u) 1 1 + |a|2 log |a|2 + |b|2 log |b|2 0

S(ρA||ρC) −1
2
(log 0)(1 − u) −1 − 1

2
(log 0) − log(2|a||b|) 0

S(ρC ||ρB) −(log 0)|b|2 1 1 + |a|2 log |a|2 + |b|2 log |b|2 0

S(ρB||ρC) −(log 0)|b|2 −1 − 1
2
(log 0) − log(2|a||b|) 0

S(ρA||ρB) −1
2
(log 0) 0 0 0

S(ρB||ρA) −1
2
(log 0) 0 0 0

Table III: Relative entropy at each stage (u ≡ ab∗ + a∗b).

Now we would like to discuss Table II briefly. As is well-known, the original purpose of

the quantum teleportation is for Alice(A) to send ψ〉 = a|0〉 + b|1〉 in C-system to Bob(B)
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using a Bell state (|00〉+ |11〉)/
√

2, which is shared by Alice and Bob at stage “2”. That is

why the mutual information S(B : C) between B and C becomes non-zero at stage“3” and

“4”. Table II also shows that several conditional entropies become negative, which indicates

the emergence of the entangled states[7]. Another point we would like to stress is the fact

that all joint entropies increase when stage is moved from “4” to “5”. Since level “5” is a

stage just after the quantum measurement performed by Alice, this fact reflects that the

projective measurements generally increase the quantum entropy[7]. In the next section we

will discuss how the quantities at stage “5” are computed.

III. SINGLE-QUBIT TELEPORTATION: AFTER MEASUREMENT

The stage “5” is just after Alice has performed the quantum measurement but just

before Bob has learned the measurement result. We can describe the situation of the stage

“5” differently as following. Firstly, Alice performed the quantum measurement at the

computational besis {|00〉, |01〉, |10〉, |11〉} of the joint CA-system. In order to compute the

probability P (C,A) for the measurement result, we need an reduced density operator ρCA

at stage “4” which is

(

ρCA
)

4
=

1

4















1 ab∗ + a∗b |a|2 − |b|2 −(ab∗ − a∗b)

ab∗ + a∗b 1 −(ab∗ − a∗b) |a|2 − |b|2

|a|2 − |b|2 ab∗ − a∗b 1 −(ab∗ + a∗b)

ab∗ − a∗b |a|2 − |b|2 −(ab∗ + a∗b) 1















. (3.1)

Thus the probability P (0, 0) for Alice to get C = 0 and A = 0 is

P (0, 0) = Tr
[

|00〉〈00|
(

ρCA
)

4

]

=
1

4
. (3.2)

By same way one can show easily P (0, 1) = P (1, 0) = P (1, 1) = 1/4.

P (C.A) P (0,0)= 1

4
P (0,1)= 1

4
P (1,0)= 1

4
P (1,1)= 1

4

ρCAB |00〉〈00|⊗

0

B

B

@

|a|2 ab∗

a∗b |b|2

1

C

C

A

|01〉〈01|⊗

0

B

B

@

|b|2 a∗b

ab∗ |a|2

1

C

C

A

|10〉〈10|⊗

0

B

B

@

|a|2 −ab∗

−a∗b |b|2

1

C

C

A

|11〉〈11|⊗

0

B

B

@

|b|2 −a∗b

−ab∗ |a|2

1

C

C

A

Table IV: The probability distribution for the projective measurement performed by Alice

and the corresponding joint density operator ρCAB at stage “5”.
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In order to compute ρCAB at stage “5” we need ρCAB at stage “4” which is

ρCAB
4 =

1

4

[

|00〉〈00| ⊗ (a|0〉 + b|1〉)(a∗〈0| + b∗〈1|) (3.3)

+|01〉〈01| ⊗ (b|0〉 + a|1〉)(b∗〈0| + a∗〈1|) + |10〉〈10| ⊗ (a|0〉 − b|1〉)(a∗〈0| − b∗〈1|)

+|11〉〈11| ⊗ (−b|0〉 + a|1〉)(−b∗〈0| + a∗〈1|) + · · ·
]

where · · · denotes the off-diagonal part in the joint CA-system. Thus if Alice gets C = A = 0

in the projective measurement, ρCAB at stage “5” reduces to

ρCAB
0,0 =

1

P (0, 0)
(|00〉〈00|)ρCAB

4 (|00〉〈00|) = (|00〉〈00|)⊗





|a|2 ab∗

a∗b |b|2



 . (3.4)

If Alice gets different measurement results, we have, of course, different ρCAB at stage “5”.

The possible measurement results and the corresponding ρCAB at stage “5” is summarized

at Table IV.

Since Alice does not inform the measurement result to Bob yet at level “5”, the density

operator at this stage should be same with the density operator for the case that Alice lost,

for some reason, her record of the measurement result. In the latter case it is reasonable to

conjecture ρCAB as an average value as following:

ρCAB =
1

4
(|00〉〈00|)⊗





|a|2 ab∗

a∗b |b|2



 +
1

4
(|01〉〈01|)⊗





|b|2 a ∗ b
ab∗ |a|2



 (3.5)

+
1

4
(|10〉〈10|)⊗





|a|2 −ab∗

−a∗b |b|2



 +
1

4
(|11〉〈11|)⊗





|b|2 −a ∗ b
−ab∗ |a|2



 .

Since Tr(ρCAB)2 = 1/4, it is a mixed state. Its eigenvalues are {1/4, 0} with four-fold

degeneracies respectively, and therefore the corresponding von Neumann entropy is

S(C,A,B) = 2. (3.6)

Tracing out A, B, and C respectively, one can easily construct

ρCA =
I

4
ρCB =

1

4















1 u 0 0

u 1 0 0

0 0 1 −u
0 0 −u 1















ρAB =
1

2















|a|2 0 0 0

0 |b|2 0 0

0 0 |b|2 0

0 0 0 |a|2















(3.7)
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where I is unit matrix and u = ab∗ + a∗b. It is worthwhile noting that ρCA becomes

completely mixed state in thi stage. This means that Alice’s knowledge on |ψ〉 becomes

completely mixed out through the quantum measurement. Computing the eigenvalues, one

can easily compute the corresponding entropies which is explicitly given at Table II. Tracing

out again one can also show that the density operators for all single-qubit systems become

completely mixed:

ρC = ρA = ρB =
I

2
. (3.8)

This fact indicates that Bob cannot conjecture the state |ψ〉 without the classical channel

described in Fig. 1. This fact reconciles the quantum mechanics with the theory of relativity

in the faster-than-light-communication.

Table II shows that all joint entropies at stage “5” increase compared to those at stage “4”.

This fact reflects the well-known fact that the projective measurement increases the quantum

entropy. In spite of the projective measurement, however, S(A) and S(B) remains same at

both stages. This is because that at stage “2” AB system becomes maximally entangled and

therefore the von Neumenn entropies for the component systems become maximum. Thus it

is impossible to increase the entropies although Alice performs the projective measurement

between stage “4” and “5”.

Another remarkable point in Table II is that the mutual informations decrease at stage

“5” compared to stage “4”. This decreasing behavior is obvious for S(A : B) and S(A : C)

but not manifest for S(B : C). To show that S(B : C) decreases too we note

S(B : C) =







−r2 log r2 − (1 − r2) log(1 − r2) at stage “4”

1
2
log(1 − u2) + u

2
log 1+u

1−u
at stage “5”

(3.9)

where u = 2r
√

1 − r2 cos θ with r = |a| and θ = Arg(a) − Arg(b). Plotting together

one can show that S(B : C) at stage “4” is always larger than S(B : C) at stage “5”.

The decreasing behavior of the mutual information can be explained as follows. Note that

S(A : B) ≡ S(A)+S(B)−S(A,B). Since the state of AB-system is maximally entangled at

stage “2”, S(A) and S(B) become maximized before quantum measurement performed by

Alice. However, the joint AB-system is two-qubit system, the maximum of S(A,B) is two,

and the joint entropy has a room to increase by the projective measurement. As a result,

therefore, the mutual informations exhibit decreasing behavior at stage “5”. Finally all of

the conditional entropies increase at stage “5”. This can be explained too using a similar
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(b)

FIG. 2: Two different intermediate stages between stage “4” and stage “5”. These intermediate

stages are introduced to examine the effect of quantum measurement in the change of quantum

entropy.

argument.

IV. QUANTUM MEASUREMENT ISSUE

In this section we would like to examine the issue on the effect of the quantum measure-

ment in the change of quantum entropy. In order to explore this issue in detail we assume

that Alice performs the quantum measurement for C and A systems in different time as

shown in Fig. 2. Thus we have two different stages “4.5-1” and “4.5-2” between stage “4”

and stage “5”.

Now we consider stage “4.5-1”, where the projective measurement is performed at the

computational basis {(|0〉〈0|)C, (|1〉〈1|)C}. In order to compute the probability for the mea-

surement results C = 0 or C = 1 we need ρC at stage “4”, which is

(ρC)4 =
1

2

[

|0〉〈0|+ (|a|2 − |b|2)|0〉〈1| + (|a|2 − |b|2)|1〉〈0|+ |1〉〈1|
]

. (4.1)

Thus the probabilities become

P (C = 0) = Tr[|0〉〈0|(ρC)4] =
1

2
(4.2)

P (C = 1) = Tr[|1〉〈1|(ρC)4] =
1

2
.

When the quantum measurement yields C=0, the density operator for CAB joint system

becomes

ρCAB
0 =

1

P (C = 0)

[

(|0〉〈0|)Cρ
CAB
4 (|0〉〈0|)C

]

(4.3)
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where ρCAB
4 is density operator for CAB system at stage “4”. By same way it is straight-

forward to compute ρCAB
1 , i.e. the density operator for CAB system when Alice gets C=1,

which is

ρCAB
1 =

1

P (C = 1)

[

(|1〉〈1|)Cρ
CAB
4 (|1〉〈1|)C

]

. (4.4)

If Alice lost the record of her measurement result, the density operator reduces to its expec-

tation value

ρCAB = P (C = 0)ρCAB
0 + P (C = 1)ρCAB

1 . (4.5)

Once the density operator for total system is obtained, it is easy to compute the density

operator for the sub-systems by making use of the partial trace appropriately. Then one

can compute the von Neumann entropies easily. Of course similar computational procedure

can be applied to compute the quantum entropy at stage “4.5-2”. The various quantum

entropies at stage “4.5-1” and “4.5-2” are summarized at Table V when Alice lost her record

of the measurement result.

stage “4.5-1” stage “4.5-2”

S(A,B,C) 1 1

S(A) 1 1

S(B) 1 1

S(C) 1 −|a|2 log |a|2 − |b|2 log |b|2

S(A,B) −|a|2 log |a|2 − |b|2 log |b|2 1 − |a|2 log |a|2 − |b|2 log |b|2

S(A,C) 2 − 1
2
log(1 − u2) − u

2
log 1+u

1−u
1 − |a|2 log |a|2 − |b|2 log |b|2

S(B,C) 2 − 1
2
log(1 − u2) − u

2
log 1+u

1−u
1

Table V:Various quantum entropy at stage “4.5-1” and stage “4.5-2” (u ≡ ab∗ + a∗b).

The quantum entropies in the intermediate stages have several properties. For example,

the quantum state in the C-system becomes completely mixed at stage “4.5-1”, which is

same with that of stage “5”. However, at stage “4.5-2” S(C) is same with that of stage

“4”. This fact indicates that measuring C performed by Alice is responsible for the change

of S(C) between stage “4” and “5”. Same and converse situations occur in S(B,C) and

S(A,B) respectively. The only one which has non-trivial value in the intermediate stage is

S(A,C). Of course S(A,C) in the intermediate stages “4.5-1” and “4.5-2” are between 1
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and 2, where the former is S(A,C) at stage “4” while the latter is at stage “5”. Defining

r = |a| and θ = Arg(a) − Arg(b) again, one can plot S(A,C) which is given in Fig. 3.

0

1

r

0

2 Π

theta

1

2

SHA,CL

0

1

r

FIG. 3: Plot of joint entropy S(A,C) at intermediate stages “4.5-1” and “4.5-2” with varying

0 ≤ r ≡ |a| ≤ 1 and 0 ≤ θ ≡ Arg(a)−Arg(b) ≤ 2π. This figure indicates that if |ψ〉 is close to the

computational basis (r ∼ 0 or r ∼ 1), S(A,C) in the stage “4.5-1” is much larger than that in the

stage “4.5-2” while converse situation occurs when |ψ〉 is far from the computational basis.

Fig. 3 indicates that in the small r and large r region S(A,C) in the stage “4.5-1” is

much larger than that in stage “4.5-2”. However, in the intermediate range S(A,C) in the

stage “4.5-2” becomes much larger. This means that if |ψ〉 is close to the computational

basis, measuring C is dominantly responsible for S(A,C) at stage “5”. If, however, |ψ〉 is far

from the computational basis, this responsibility is changed into the measurment of system

A.

14



V. CONCLUSION

In this paper we have analyzed the single qubit quantum teleportation by computing the

various quantum entropies at each stage of Fig. 1. Before quantum measurement performed

by Alice between stage “4” and stage “5”, the von Neumann entropies, conditional entropies,

relative entropies and mutual information are summarized in Table II and III. Table III shows

that the relative entropy is always non-negative, which is well-known as Klein’s inequality.

Therefore, the relative entropy can be regarded as a measure for distance between two

different quantum states like trace distance or fidelity. Some relative entropies become

infinity, which indicates the non-trivial intersection of the support of one quantum state with

kernel of the other quantum state. Table II shows that the mutual information S(B : C)

becomes non-negative at stage “3” and “4”. This means that the partial information on |ψ〉 is

transmitted to Bob, consistent with the original purpose of the quantum teleportation. Table

II also shows that some conditional entropies become negative when the corresponding joint

systems are in pure states. This fact indicates that the component systems are entangled.

Of course there are many entangled states in sub-systems when the joint system is not in

pure state. The properties of entangled or product, and pure or mixed for all systems are

summarized in Table I.

At stage “5”, where Alice performs the projective measurement but she has not yet

informed of the measurement result to Bob through classical channel, the state for the joint

system CAB can be chosen as an average expectation value. In this case the state of total

system CAB becomes mixed and entangled. The various quantum entropies are summarized

at Table II and Table III. Table II shows that the joint and conditional entropies increase

due to the projective measurement while the mutual information decreases. The reason for

the decrease of the mutual information is discussed in section III.

Finally we have introduced two different intermediate stages “4.5-1” and “4.5-2” between

stage “4” and “5” in Fig. 2 to examine the effect of the quantum measurement in the

quantum entropies. The quantum entropies in these intermediate stages are summarized in

Table V. Table V shows that all entropies except S(A,C) are either one of corresponding

entropies at stage “4” or stage “5”. The joint entropy S(A,C) at stage “4.5-1” and “4.5-

2” are plotted in Fig. 3. From this figure we can understand that if |ψ〉 is close to the

computational basis, measuring C is dominantly responsible for S(A,C) at stage “5” while

15



this dominant responsibility is changed into the measurement of A if |ψ〉 is far from the

computational basis.

It is of interest to extend our results to the quantum algorithm for the multi-qubit quan-

tum teleportation. Also it seems to be interest to analyze the Shor’s factoring algorithm[4]

and Grover’s search algorithm[16, 17] from the aspect of the quantum information theories.

We hope to visit these issues in the near future.
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