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Abstract We examine mixedness and entanglement of the chronology-respecting
(CR) system assuming that quantum mechanical closed timelike curves (CTCs) exist
in nature. In order to discuss these two issues analytically, we introduce the qubit
system and apply the general controlled operations between CR and CTC systems.We
use the magnitude of Bloch vector as a measure of mixedness.While Deutschian-CTC
(D-CTC) either preserves or decreases the magnitude, postselected-CTC (P-CTC) can
increase it. Non-intuitively, even the completely mixed CR qubit can be converted into
a pure state after CTC qubit travels around the P-CTC. It is also shown that while D-
CTC cannot increase the entanglement of CR system, P-CTC can increase it. This
means that any partially entangled state can be maximally entangled pure state if P-
CTC exists. Thus, distillation of P-CTC-assisted entanglement can be easily achieved
without preparing the multiple copies of the partially entangled state.

Keywords Closed timelike curves · Mixedness · Entanglement

1 Introduction

It is well known that the theory of general relativity allows the possible existence of
closed timelike curves (CTCs) [1–3]. However, allowance of time travel generates
logical paradoxes such as the grandfather paradox, in which the time traveler per-
forms an action that causes her future self not to exist. Furthermore, the existence of
CTCs cannot be compatible with a standard quantum mechanics, because quantum
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mechanics allows only unitary evolution. In order to solve these difficulties, Deutsch
[4] modifies the standard quantummechanics, which allows the non-unitary evolution
in the presence of CTCs. To escape the grandfather paradox, in addition, he imposes
the self-consistent constraint of CTC interaction (see Eq. 1). Thus, it makes it possible
to explore the properties of CTCs without relying on the exotic spacetime geometries.

Then, it is natural to ask how quantum mechanics is modified if Deutsch’s CTCs
(D-CTCs) exist. For last few years, this question was explored in the various contexts
[5–11]. Among them, most striking result is that any non-orthogonal states can be per-
fectly distinguished if one can access to D-CTCs [8]. This fact implies that security
of usual quantum cryptography scheme such as BB84 protocol [12] is not guaranteed.
Subsequently, the authors of Ref. [13] raised a question on the perfect discrimination
and computational power in the presence of D-CTCs. They argued that when the input
state is a labeled mixture, the assistance of CTCs in distinguishability and computa-
tional power is of no use. However, their argument was also criticized in Ref. [14].
The authors of Ref. [14] claimed by constructing the equivalent circuit that the CTCs
would be a true powerful resource for quantum information processing. Another non-
intuitive result arising due to existence of D-CTCs is that any arbitrary dimensional
quantum states can be perfectly cloned if the dimension of the CTC system is infinite
[10,11]. Thus, the well-known no-cloning theorem [15] can be broken in the presence
of D-CTCs. In our opinion, however, still it seems to be open problem to determine
whether or not the assistance of CTCs allows such non-intuitive results, because the
debate between Ref. [8] and Ref. [13] is not concluded yet.

Mathematically, the Deutsch’s self-consistency condition is expressed as

ρ
(CTC)
out ≡ trCR

[
U

(
ρ

(CR)
in ⊗ ρ

(CTC)
in

)
U †

]
= ρ

(CTC)
in (1)

where ρ
(CR)
in and ρ

(CTC)
in are input states of the chronology-respecting (CR) and

chronology-violating systems, respectively. Here, ρ(CTC) is a quantum state of system
traversing the CTC and ρ(CR) is a quantum state of system, which only interacts with
ρ(CTC), but not traversing the CTC. The operator U represents the unitary interac-
tion between CR and CTC systems. Since the self-consistency condition imposes the
equality of input and output CTC states, it naturally solves the grandfather paradox.
Deutsch [4] showed that the fixed-point solution of Eq. (1) always exists, but it does
not necessarily have to be unique. If there are many solutions, Deutsch suggested the
maximum entropy rule. If ρ(CTC) is fixed, the CR system is evolved as

ρ
(CR)
in → ρ

(CR)
out ≡ trCTC

[
U

(
ρ

(CR)
in ⊗ ρ

(CTC)
in

)
U †

]
. (2)

The output state ρ
(CR)
out is in general non-unitary evolution of ρ

(CR)
in , because ρ

(CR)
out

depends on both ρ
(CR)
in and ρ(CTC), and ρ(CTC) also depends on ρ

(CR)
in .

The postselected CTCs [16–18] (P-CTCs) are another type of quantummechanical
CTCs, which also solve the paradoxes. In P-CTC picture time travel effectively rep-
resents a quantum communication channel from the future to the past. If one chooses
a quantum teleportation channel as the communication channel, P-CTCs provide a
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self-consistent picture of quantum mechanical time travel via postselected quantum
teleportation [19]. It is based on the Horowitz–Maldacena “final state condition” [20]
for black hole evaporation [21] and, unlike D-CTCs, are consistent with path-integral
approaches to CTCs [22,23]. In P-CTCs formalism the state in CTC system is not
explicitly specified while the output state of the CR system is given by

ρ
(CR)
out ∝ Vρ

(CR)
in V † (3)

where V = trCTCU . It turned out that though P-CTCs are less powerful resource than
D-CTCs in the quantum information processing, they also have a computational and
discrimination power [24].

In this Letter, we explore the following issues. By introducing simple qubit sys-
tem and general controlled operations, mixedness of the CR system is examined. The
mixedness is measured by a magnitude of Bloch vector. It is shown that the magnitude
of Bloch vector for qubit system assisted by D-CTCs either preserves or decreases.
Thus, the pureCRstate can propagate tomixed statewhenCTCqubit travels around the
D-CTC. In this sense, CTC problem resembles the information loss problem [25,26]
in Hawking radiation [27]. For P-CTCs, however, the magnitude of Bloch vector can
increase. In this case, a mixed state can evolve to a pure state. Even the completely
mixed state can be converted into a pure state if the controlled operation is chosen
appropriately. We also examine how the entanglement of the CR system is changed in
the presence of CTCs. While D-CTCs always either preserve or degrade the entangle-
ment, P-CTCs can increase it. Thus, if any partially entangled CR state is prepared, one
can change it into a maximally entangled pure state if P-CTCs assist. This fact implies
that distillation of entanglement [28,29] can be easily achieved without preparing the
many copies of the partially entangled state if P-CTCs are appropriately exploited.

2 Mixedness in the presence of CTCs

Since both D-CTC and P-CTC allow the non-unitary evolution for CR system, it is
natural to ask how the mixedness is changed in the presence of the CTCs. It is known
that single-qubit state is pure or completelymixedwhen themagnitude of Bloch vector
is one or zero. Thus, it is natural to choose the magnitude of Bloch vector as a measure
of mixedness.

The most general interaction between single-qubit CR and CTC systems is unitary
group U (2), whose generators are Pauli matrices and identity. Treating the general
U2 interaction seems to be difficult because it has too many free parameters. Since
we want to discuss the mixedness and entanglement issues on the analytic ground,
we want to choose more simple interaction. Since the controlled gate is frequently
used in the quantum information processing, we choose the controlled-U2 interaction
between CR and CTC systems. In this case,U2 is represented by four real parameters
as follows;
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U2 = eiφ/2
(

cos θeiφ1 sin θeiφ2

− sin θe−iφ2 cos θe−iφ1

)
. (4)

The initial CR state is chosen as a general form of one-qubit ρ
(CR)
in = 1

2 (I2 + r · σ ),
where |r| = 0 and |r| = 1 correspond to the completely mixed and pure states,
respectively. We assume r3 �= 1 because if r3 = 1, the controlled operation cannot be
turned on.

For the case of P-CTC, one can derive the output CR state by making use of Eq.
(3) as ρCR

out = 1
2 (I2 + r ′ · σ ), where

r ′
1 = 2 cos θ cosφ1

(1 + r3) + cos2 θ cos2 φ1(1 − r3)

(
r1 cos

φ

2
− r2 sin

φ

2

)

r ′
2 = 2 cos θ cosφ1

(1 + r3) + cos2 θ cos2 φ1(1 − r3)

(
r1 sin

φ

2
+ r2 cos

φ

2

)

r ′
3 = (1 + r3) − cos2 θ cos2 φ1(1 − r3)

(1 + r3) + cos2 θ cos2 φ1(1 − r3)
. (5)

Then, one can show directly

|r ′|2 − |r|2 = (1 − |r|2)
[
1 −

(
2 cos θ cosφ1

(1 + r3) + cos2 θ cos2 φ1(1 − r3)

)2
]

. (6)

As expected, Eq. (6) guarantees that the pure input CR state always evolves into pure.
Since, however, the right-hand side of Eq. (6) can be positive or negative depending on
U2, the CR state can evolve with increasing or decreasing its mixedness. Even though
ρ

(CR)
in is completely mixed state, ρ

(CR)
out becomes pure state |0〉〈0| when θ = π/2 or

φ1 = π/2. Thus, P-CTC allows the evolution from mixed to pure state if qubit travels
around the P-CTC.

However, the situation is different if the CR system is assisted by D-CTC. If the
initial CTC state ρ

(CTC)
in is chosen as a general form ρ

(CTC)
in = 1

2 (I2 + s · σ ), one can

show directly ρ
(CTC)
out ≡ trCR

[
Uρ

(CR)
in ⊗ ρ

(CTC)
in U †

]
= 1

2

(
I2 + s′ · σ

)
, where

�s1 = −(1 − r3)

[
s1

(
sin2 φ1 + sin2 θ cos(φ1 + φ2) cos(φ1 − φ2)

)

− s2
(
cos2 θ sin φ1 cosφ1 + sin2 θ sin φ2 cosφ2

)

+ s3 sin θ cos θ cos(φ1 + φ2)

]

�s2 = −(1 − r3)

[
s1

(
cos2 θ sin φ1 cosφ1 − sin2 θ sin φ2 cosφ2

)

+ s2
(
sin2 φ1 − sin2 θ sin(φ1 + φ2) sin(φ1 − φ2)

)
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Table 1 Solutions of the self-consistency condition for various U2

Condition solution of self-consistency condition

sin θ = 0, sin φ1 = 0 No constraint

sin θ = 0, sin φ1 �= 0 s1 = s2 = 0

sin θ �= 0, sin φ1 = 0 s1 = s2 tan φ2, s3 = 0

sin θ �= 0, sin φ1 �= 0 s1 = s3 tan θ cscφ1 sin φ2, s2 = s3 tan θ cscφ1 cosφ2

− s3 sin θ cos θ sin(φ1 + φ2)

]

�s3 = (1 − r3) sin θ

[
s1 cos θ cos(φ1 − φ2) + s2 cos θ sin(φ1 − φ2) − s3 sin θ

]

(7)

with �s j = s′
j − s j ( j = 1, 2, 3). Then, the self-consistency condition (1) simply

reduces to �s j = 0.
The solutions of the self-consistency condition are summarized in Table 1 for var-

ious U2. We will focus on the case of sin θ �= 0 and sin φ1 �= 0, since the remaining
ones can be discussed in a similar way. Since |s| ≤ 1, the self-consistency condition
implies

s23 ≤ sin2 φ1

sin2 φ1 + tan2 θ
(8)

where equality holds for pure CTC state. Then, the output CR state becomes ρ
(CR)
out ≡

trCTC

[
Uρ

(CR)
in ⊗ ρ

(CTC)
in U †

]
= 1

2

(
I2 + r ′ · σ

)
, where

r ′
1 = Pr1 − Qr2 r ′

2 = Qr1 + Pr2 r ′
3 = r3 (9)

with

P = cos
φ

2
cos θ cosφ1 − s3 sin

φ

2

sin2 θ + cos2 θ sin2 φ1

cos θ sin φ1

Q = sin
φ

2
cos θ cosφ1 + s3 cos

φ

2

sin2 θ + cos2 θ sin2 φ1

cos θ sin φ1
. (10)

Therefore, |r ′|2 = (P2 + Q2)(r21 + r22 ) + r23 , where

P2 + Q2 = cos2 θ cos2 φ1 + s23

(
sin2 θ + cos2 θ sin2 φ1)

cos θ sin φ1

)2

.

When s23 saturates the inequality (8), it is easy to show |r ′| = |r|. Thus, the mixed-
ness of the CR system is preserved when the CTC system is pure. When CTC
state is mixed, ρ

(CR)
out is more mixed than ρ

(CR)
in , i.e., |r ′| < |r|. If the Deutsch’s
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(a) (b)

Fig. 1 a Circuit for examining the mixedness of CR system when CR and CTC systems interact with each
other through general controlled operations. The U2 is represented by Eq. (4). The double vertical bars
on the bottom left and right indicate the past and future mouths of the wormhole for the CTC. b Circuit
for examining the entanglement of CR state in the presence of CTC. We choose the initial CR state as a

partially entangled state |ψ(CR)
in 〉 = α|00〉 + β|11〉 with α2 + β2 = 1 and |β| ≥ |α|

maximum entropy postulate is chosen, ρ
(CR)
out becomes the maximal mixed state

|r ′|2 = cos2 θ cos2 φ1(r21+r22 )+r23 . Thus, any pure states of the form
1√
2

(|0〉 + eiθ |1〉)
can be converted into the completely mixed state when cos θ = 0 or cosφ1 = 0 if
maximum entropy rule is chosen.

3 Entanglement in the presence of CTCs

We examine how the entanglement of CR system is changed in the presence of CTCs.
To explore this issue, we introduce partially entangled two-qubit initial state |ψ(CR)

in 〉 =
α|00〉+β|11〉where α2+β2 = 1.We also choose |β| ≥ |α|without loss of generality.
One party of CR system interacts with CTC through the controlled-U2 operation. The
other party has no interactionwith the CTC system. This situation is depicted in Fig. 1b
as a quantum circuit. We will use the concurrence [30] as an entanglement measure.
The concurrence of |ψ(CR)

in 〉 is 2|αβ|.
For the case of P-CTC, one can derive ρ

(CR)
out by making use of Eq. (3) in a form

ρ
(CR)
out = 1

α2 + β2 cos2 θ cos2 φ1

[
α2|00〉〈00|+β2 cos2 θ cos2 φ1|11〉〈11|

+αβe−iφ/2 cos θ cosφ1|00〉〈11|+αβeiφ/2 cos θ cosφ1|11〉〈00|
]
. (11)

The concurrence of ρ
(CR)
out is easily computed by following the procedure of Ref. [30],

and final expression is

C
(
ρ

(CR)
out

)
= 2|αβ|γ (12)

where the ratio γ is

γ = | cos θ cosφ1|
α2 + β2 cos2 θ cos2 φ1

. (13)

It is remarkable to note that the ratio γ is dependent on bothU2 and the initial CR state.
Surprisingly, one can always make ρ

(CR)
out maximally entangled pure state 1√

2
(|00〉 ±

eiφ/2|11〉) by choosing cos θ cosφ1 = ±α
β
. Thus, if P-CTC exists, the distillation of
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entanglement of CR system can be easily achieved without preparing multiple copies
of the partially entangled state. It is sufficient to prepare a single copy for complete
distillation by choosing U2 appropriately.

The situation is different for the case of D-CTC. We define the initial CTC state
as a one-qubit general form ρ

(CTC)
in = 1

2 (I2 + s · σ ). Then, the output CTC state

becomes ρ
(CTC)
out ≡ trCR

[
U |ψ(CR)

in 〉〈ψ(CR)
in |⊗ρ

(CTC)
in U †

]
= 1

2

(
I2 + s′ · σ

)
, where

�s j ( j = 1, 2, 3) is exactly the same with Eq. (7) if 1 − r3 is changed into 2β2.
Thus, the solutions of the self-consistency condition are identical with those given in
Table 1. One can also show directly that the output CR state is

ρ
(CR)
out ≡ trCTC

[
U |ψ(CR)

in 〉〈ψ(CR)
in |⊗ρ

(CTC)
in U †

]

= α2|00〉〈00|+β2|11〉〈11|+A|00〉〈11|+A∗|11〉〈00| (14)

where

A = e−iφ/2αβ [cos θ cosφ1 − i (s1 sin θ sin φ2 + s2 sin θ cosφ2 + s3 cos θ sin φ1)] .
(15)

It is easy to show that the concurrence of ρ
(CR)
out is

C
(
ρ

(CR)
out

)
= 2min (|A|, |αβ|) . (16)

Thus, D-CTC can either preserve or decrease the entanglement of CR system.
For example, let us consider the case of sin θ �= 0 and sin φ1 �= 0. Then, the

variation of entanglement �E ≡ C
(
ρ

(CR)
in

)
− C

(
ρ

(CR)
out

)
can be computed by making

use of Eq. (16) and Table 1:

�E = 2|αβ|
⎡
⎣1 −

√
1 −

(
1 − sin2 φ1 + tan2 θ

sin2 φ1
s23

) (
sin2 θ + cos2 θ sin2 φ1

)
⎤
⎦ .

(17)
Thus, if the inequality (8) is saturated, �E vanishes. This means that if the CTC-
state is pure, the entanglement of CR state is preserved. If we choose the maximal
entropy CTC state as Deutsch suggested, the maximal degradation of entanglement
�E = 2|αβ|(1 − | cos θ cosφ1|) occurs.

4 Conclusions

Although the theory of general relativity does allow CTC as a solution of Einstein field
equations, still there are a lot of controversial for existence of CTCs. In this Letter,
we have addressed two issues, mixedness and entanglement for CR system assuming
that D-CTC and/or P-CTC exist(s) in nature. It was shown that while D-CTC-assisted
qubit cannot increase the magnitude of its Bloch vector, P-CTC-assisted qubit can.
As a result, the mixed CR state can evolve to pure CR state if P-CTC exists. Even the
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completely mixed state can evolve to pure state if we choose the phase angles of U2
appropriately.

Although the CTC state is not specified explicitly for the case of P-CTC, one can
get some information of P-CTC state if exists any. Let us imagine a closed systems
composed by CR and P-CTC subsystems. Let us assume that they interact with each
other through some unitary operation. If one uses the subadditivity of the vonNeumann
entropy, one can show �S(CTC) ≥ −�S(CR), where S is a von Neumann entropy and
�S(·) ≡ S(ρ

(·)
out) − S(ρ

(·)
in ). Thus, computing the entropy difference in CR subsystem

one can compute the lower bound of �S(CTC) although we do not know the P-CTC
state explicitly.

We also have studied the case where the CR system consists of bipartite partially
entangled particles and one of them interacts with CTC system through controlled-
U2 operation. For the case of P-CTC surprisingly the partially entangled state can
always be converted into the maximally entangled pure state if the phase angles of
U2 are chosen appropriately. If, therefore, P-CTCs exist, the distillation protocol of
entanglement is easily achieved without preparing the multiple copies of the partially
entangled state. For the case of D-CTC, such a non-intuitive effect disappears because
D-CTC either preserves or decreases the entanglement of CR system.

There are a lot of questions in the context of CTCs. How to incorporate the general
relativistic CTCs into the quantum mechanical CTCs or vice versa? What happens
to the uncertainty relations if CTCs exist [11,31,32]? While P-CTC allows only the
evolution of pure state to pure state, D-CTC allows the evolution of pure state to mixed
state. Thus, existence of D-CTC may provide clue for the information loss problem
of black hole. In this context, the information loss problem was discussed in Ref. [27]
by introducing a simple toy model. Of course, rigorous and explicit analysis should
be addressed to clarify a connection between existence of CTCs and information loss
problem. Probably, the theory of quantum gravitymay give some answers in the future.

Another interesting issue is to check whether our results of mixedness and entan-
glement in the presence of CTCs are valid for general interaction U (2) or not. We
hope to study this issue in the future.
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