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Abstract

We study on the tripartite entanglement dynamics when each party is initially entangled with

other parties, but they locally interact with their own Markovian or non-Markovian environment.

First, we consider three GHZ-type initial states, all of which have GHZ symmetry provided that

the parameters are chosen appropriately. However, this symmetry is broken due to the effect of

environment. The corresponding π-tangles, one of the tripartite entanglement measure, are analyt-

ically computed at arbitrary time. For Markovian case while the tripartite entanglement for type

I exhibits an entanglement sudden death, the dynamics for the remaining cases decays normally

in time with the half-life rule. For non-Markovian case the revival phenomenon of entanglement

occurs after complete disappearance of entanglement. We also consider two W-type initial states.

For both cases the π-tangles are analytically derived. The revival phenomenon also occurs in this

case. On the analytical ground the robustness or fragility issue against the effect of environment

is examined for both GHZ-type and W-type initial states.

∗ dkpark@kyungnam.ac.kr
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I. INTRODUCTION

Entanglement[1, 2] is one of the important concepts from fundamental aspect of quantum

mechanics and practical aspect of quantum information processing. As shown for last two

decades it plays a crucial role in quantum teleportation[3], superdense coding[4], quantum

cloning[5], and quantum cryptography[6, 7]. It is also quantum entanglement, which makes

the quantum computer1 outperform the classical one[9].

Quantum mechanics is a physics, which is valid for ideally closed system. However, real

physical systems inevitably interact with their surroundings. Thus, it is important to study

how the environment modifies the dynamics of given physical system. There are two different

tools for describing the evolution of open quantum system: quantum operation formalism[1]

and master equation approach[10]. Both tools have their own merits.

Since it is known that quantum system loses quantum properties by contacting the

environment[11], we expect that the degradation of entanglement occurs[12–14]. Some-

times entanglement exhibits an exponential decay in time by successive halves. Sometimes,

however, the entanglement sudden death (ESD) occurs when the entangled multipartite

quantum system is embedded in Markovian environments[15–18]. This means that the en-

tanglement is completely disentangled at finite times. This ESD phenomenon has been

revealed experimentally[19, 20]. When the ESD occurs, it is natural to ask where the lost

entanglement goes. It was found that when the entanglement of given quantum system

suddenly disappears, the reservoir entanglement suddenly appears, which is called entan-

glement sudden birth (ESB) [21]. Since we do not consider the degrees of freedom for the

environment, we do not examine the ESB phenomenon in this paper.

The dynamics of entanglement was also examined when the physical system is embedded

in non-Markovian environment[10, 22]. It has been shown that there is a revival of entangle-

ment after a finite period of time of its complete disappearance. This is mainly due to the

memory effect of the non-Markovian environment. This phenomenon was shown in Ref.[22]

by making use of the two qubit system and concurrence[23] as a bipartite entanglement mea-

sure. Subsequently, many works have been done to quantify the non-Markovianity[24–29].

In this paper we consider the entanglement dynamics when the qubit system interacts

1 The current status of quantum computer technology was reviewed in Ref.[8].
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with the Markovian or non-Markovian environment. So far this issue was investigated by

making use of the bipartite system. Recently, the tripartite entanglement dynamics was also

explored in Ref.[29] numerically. Since entanglement is an important physical resource in

the quantum information processing, it is important to control the entanglement dynamics

when the environment is present. In order to control the entanglement it is crucial to

derive the entanglement analytically in the entire range of time. For example, analytic

derivation for the bipartite entanglement dynamics enables us to explore the entanglement

invariants[18, 30]. It is also possible to discuss the robustness or fragility issue against

the environment by exploiting the analytical results. Thus, we will explore the tripartite

entanglement dynamics in this paper on the analytical ground. For simplicity, we choose the

physical setting, i.e. there is no interaction between qubit and each qubit interacts with its

own reservoir. We will compute the entanglement at arbitrary time for three-types of initial

Greenberger-Horne-Zeilinger(GHZ) states[31] and for two types of initial W-states[32] in the

presence of the Markovian or non-Markovian environment.

Typical tripartite entanglement measures are residual entanglement[33] and π-tangle[34].

For three-qubit pure state |ψ〉 =
∑1

i,j,k=0 aijk|ijk〉 the residual entanglement τABC becomes

τABC = 4|d1 − 2d2 + 4d3|, (1.1)

where

d1 = a2000a
2
111 + a2001a

2
110 + a2010a

2
101 + a2100a

2
011, (1.2)

d2 = a000a111a011a100 + a000a111a101a010 + a000a111a110a001

+a011a100a101a010 + a011a100a110a001 + a101a010a110a001,

d3 = a000a110a101a011 + a111a001a010a100.

Thus, the residual entanglement of any three-qubit pure state can be computed by making

use of Eq. (1.1). Although the residual entanglement can detect the GHZ-type entanglement,

it cannot detect the W-type entanglement:

τABC(GHZ) = 1 τABC(W ) = 0, (1.3)

where

|GHZ〉 =
1√
2

(|000〉+ |111〉) |W 〉 =
1√
3

(|001〉+ |010〉+ |100〉) . (1.4)
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For mixed states the residual entanglement is defined by a convex-roof method[35, 36] as

follows:

τABC(ρ) = min
∑
i

piτABC(ρi), (1.5)

where the minimum is taken over all possible ensembles of pure states. The pure state

ensemble corresponding to the minimum τABC is called the optimal decomposition. It is

in general difficult to derive the optimal decomposition for arbitrary mixed states. Hence,

analytic computation of the residual entanglement can be done for rare cases[37]. Fur-

thermore, recently, three-tangle2 τ3 of the whole GHZ-symmetric states[38] was explicitly

computed[39].

The π-tangle defined in Ref.[34] is easier for analytic computation than the residual

entanglement (or three tangle) because it does not rely on the convex-roof method. The

π-tangle is defined in terms of the global negativities [40]. For a three-qubit state ρ they are

given by

NA = ||ρTA|| − 1, NB = ||ρTB || − 1, NC = ||ρTC || − 1, (1.6)

where ||R|| = Tr
√
RR†, and the superscripts TA, TB, and TC represent the partial transposes

of ρ with respect to the qubits A, B, and C respectively. Then, the π-tangle is defined as

πABC =
1

3
(πA + πB + πC), (1.7)

where

πA = N 2
A(BC)−(N 2

AB+N 2
AC) πB = N 2

B(AC)−(N 2
AB+N 2

BC) πC = N 2
(AB)C−(N 2

AC+N 2
BC).

(1.8)

The remarkable property of the π-tangle is that it can detect not only the GHZ-type entan-

glement but also the W-type entanglement:

πABC(GHZ) = 1 πABC(W ) =
4

9
(
√

5− 1) ∼ 0.55. (1.9)

As commented earlier we will examine the tripartite entanglement dynamics of the three-

qubit states in the presence of the Markovian or non-Markovian environment. We will adopt

the π-tangle as an entanglement measure for analytic computation as much as possible. In

section II we consider how the three-qubit initial state is evolved when each qubit interacts

2 In this paper we will call τ3 =
√
τABC three-tangle and τ23 = τABC residual entanglement.
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with its own Markovian or non-Markovian environment[22]. In section III we explore the

entanglement dynamics of three GHZ-type initial states. The initial states are local unitary

(LU) with each other. Thus, their entanglement are the same initially. Furthermore, if the

parameters are appropriately chosen, they all have GHZ-symmetry, i.e. they are invariant

under (i) qubit permutation (ii) simultaneous three-qubit flips (iii) qubit rotations about

the z-axis. However, this symmetry is broken due to the environment effect. As a result,

their entanglement dynamics are different with each other. In section IV we examine the

entanglement dynamics of two W-type initial states. They are also LU to each other.

However, the dynamics is also different because of the environment effect. In section V a

brief conclusion is given.

II. GENERAL FEATURES

We consider three-qubit system, each of which interacts only and independently with its

local environment. We assume that the dynamics of single qubit is governed by Hamiltonian

H = H0 +HI (2.1)

where

H0 = ω0σ+σ− +
∑
k

ωkb
†
kbk (2.2)

HI = σ+ ⊗B + σ− ⊗B† with B =
∑
k

gkbk.

In Eq. (2.2) ω0 is a transition frequency of the two-level system (qubit), and σ± are the

raising and lowering operators. The index k labels the different field modes of the reservoir

with frequencies ωk, creation and annihilation operators b†k, bk, and coupling constants gk.

In the interaction picture the dynamics is governed by the Schrödinger equation

d

dt
ψ(t) = −iHI(t)ψ(t) (2.3)

where

HI(t) ≡ eiH0tHIe
−iH0t = σ+(t)⊗B(t) + σ−(t)⊗B†(t)

σ±(t) ≡ eiH0tσ±e
−iH0t = σ±e

±iω0t (2.4)

B(t) ≡ eiH0tBe−iH0t =
∑
k

gkbke
−iωkt.
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The Hamiltonian (2.1) represents one of few exactly solvable model[41]. This means that

the Schrödinger equation (2.3) can be formally solved if ψ(0) is given. Then, the reduced

state of the single qubit ρ̂S(t) ≡ Trenv|ψ(t)〉〈ψ(t)| is given by[10, 42]

ρ̂S(t) =

 ρS00(0) + ρS11(0) (1− |Pt|2) ρS01(0)Pt

ρS10(0)P ∗t ρS11(0)|Pt|2

 (2.5)

where ρ̂S(0) = Trenv|ψ(0)〉〈ψ(0)| and Trenv denotes the partial trace over the environment.

The function Pt satisfies the differential equation

d

dt
Pt = −

∫ t

0

dt1f(t− t1)Pt1 (2.6)

and the correlation function f(t− t1) is related to the spectral density J(ω) of the reservoir

by

f(t− t1) =

∫
J(ω)exp[i(ω0 − ω)(t− t1)]. (2.7)

We choose J(ω) as an effective spectral density of the damped Jaynes-Cummings model[10]

J(ω) =
1

2π

γ0λ
2

(ω0 − ω)2 + λ2
(2.8)

where the parameter λ defines the spectral width of the coupling, which is connected to the

reservoir correlation time τB by the relation τB = 1/λ and the relaxation time scale τR on

which the state of the system changes is related to γ0 by τR = 1/γ0.

By making use of the Residue theorem in complex plane the correlation function can be

easily computed in a form

f(t− t1) =
γ0λ

2
e−λ|t−t1|. (2.9)

Inserting Eq. (2.9) into Eq. (2.6) and making use of Laplace transform, one can compute

Pt explicitly. While in a weak coupling (or Markovian) regime τR > 2τB Pt becomes

Pt = e−
λ
2
t

[
cosh

(
d̄

2
t

)
+
λ

d̄
sinh

(
d̄

2
t

)]
(2.10)

with d̄ =
√
λ2 − 2γ0λ, in a strong coupling (or non-Markovian) regime τR < 2τB Pt reduces

to

Pt = e−
λ
2
t

[
cos

(
d

2
t

)
+
λ

d
sin

(
d

2
t

)]
(2.11)

with d =
√

2γ0λ− λ2. Since, in the Markovian regime λ > 2γ0, Pt in Eq. (2.10) exhibits

an exponential decay in time, it seems to make exponential decay of entanglement or ESD
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phenomenon. However, in the non-Markovian regime λ < 2γ0, Pt in Eq. (2.11) exhibits

an oscillatory behavior in time with decreasing amplitude. It seems to be responsible for

the revival phenomenon of entanglement[22], after a finite period of time of its complete

disappearance.

The state ρ̂T (t) at time t of whole three-qubit system, each of which interacts only and

independently with its own environment, can be derived by the Kraus operators[43]. Intro-

ducing, for simplicity, {|0〉 ≡ |000〉, |1〉 ≡ |001〉, |2〉 ≡ |010〉, |3〉 ≡ |011〉, |4〉 ≡ |100〉, |5〉 ≡

|101〉, |6〉 ≡ |110〉, |7〉 ≡ |111〉}, the diagonal parts of ρ̂T (t) are

ρ̂T11(t) = P 2
t

[
ρ̂T11(0) +

{
ρ̂T33(0) + ρ̂T55(0)

}
(1− P 2

t ) + ρ̂T77(0)(1− P 2
t )2
]

ρ̂T22(t) = P 2
t

[
ρ̂T22(0) +

{
ρ̂T33(0) + ρ̂T66(0)

}
(1− P 2

t ) + ρ̂T77(0)(1− P 2
t )2
]

ρ̂T33(t) = P 4
t

[
ρ̂T33(0) + ρ̂T77(0)(1− P 2

t )
]

(2.12)

ρ̂T44(t) = P 2
t

[
ρ̂T44(0) +

{
ρ̂T55(0) + ρ̂T66(0)

}
(1− P 2

t ) + ρ̂T77(0)(1− P 2
t )2
]

ρ̂T55(t) = P 4
t

[
ρ̂T55(0) + ρ̂T77(0)(1− P 2

t )
]

ρ̂T66(t) = P 4
t

[
ρ̂T66(0) + ρ̂T77(0)(1− P 2

t )
]

ρ̂T00(t) = 1−
7∑
i=1

ρ̂Tii(t)
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and the non-diagonal parts are

ρ̂T01(t) = Pt
[
ρ̂T01(0) +

{
ρ̂T23(0) + ρ̂T45(0)

}
(1− P 2

t ) + ρ̂T67(0)(1− P 2
t )2
]

ρ̂T02(t) = Pt
[
ρ̂T02(0) +

{
ρ̂T13(0) + ρ̂T46(0)

}
(1− P 2

t ) + ρ̂T57(0)(1− P 2
t )2
]

ρ̂T04(t) = Pt
[
ρ̂T04(0) +

{
ρ̂T15(0) + ρ̂T26(0)

}
(1− P 2

t ) + ρ̂T37(0)(1− P 2
t )2
]

ρ̂T03(t) = P 2
t

[
ρ̂T03(0) + ρ̂T47(0)(1− P 2

t )
]

ρ̂T05(t) = P 2
t

[
ρ̂T05(0) + ρ̂T27(0)(1− P 2

t )
]

ρ̂T06(t) = P 2
t

[
ρ̂T06(0) + ρ̂T17(0)(1− P 2

t )
]

ρ̂T12(t) = P 2
t

[
ρ̂T12(0) + ρ̂T56(0)(1− P 2

t )
]

ρ̂T13(t) = P 3
t

[
ρ̂T13(0) + ρ̂T57(0)(1− P 2

t )
]

ρ̂T14(t) = P 2
t

[
ρ̂T14(0) + ρ̂T36(0)(1− P 2

t )
]

ρ̂T15(t) = P 3
t

[
ρ̂T15(0) + ρ̂T37(0)(1− P 2

t )
]

ρ̂T23(t) = P 3
t

[
ρ̂T23(0) + ρ̂T67(0)(1− P 2

t )
]

(2.13)

ρ̂T24(t) = P 2
t

[
ρ̂T24(0) + ρ̂T35(0)(1− P 2

t )
]

ρ̂T26(t) = P 3
t

[
ρ̂T26(0) + ρ̂T37(0)(1− P 2

t )
]

ρ̂T45(t) = P 3
t

[
ρ̂T45(0) + ρ̂T67(0)(1− P 2

t )
]

ρ̂T46(t) = P 3
t

[
ρ̂T46(0) + ρ̂T57(0)(1− P 2

t )
]

ρ̂T07(t) = ρ̂T07(0)P 3
t ρ̂T16(t) = ρ̂T16(0)P 3

t ρ̂T17(t) = ρ̂T17(0)P 4
t ρ̂T25(t) = ρ̂T25(0)P 3

t

ρ̂T27(t) = ρ̂T27(0)P 4
t ρ̂T34(t) = ρ̂T34(0)P 3

t ρ̂T35(t) = ρ̂T35(0)P 4
t ρ̂T36(t) = ρ̂T36(0)P 4

t

ρ̂T37(t) = ρ̂T37(0)P 5
t ρ̂T47(t) = ρ̂T47(0)P 4

t ρ̂T56(t) = ρ̂T56(0)P 4
t

ρ̂T57(t) = ρ̂T57(0)P 5
t ρ̂T67(t) = ρ̂T67(0)P 5

t

with ρ̂Tij(t) = ρ̂T∗ji (t). Now, we are ready to explore the tripartite entanglement dynamics in

the presence of the Markovian or non-Markovian environment.

III. ENTANGLEMENT DYNAMICS OF GHZ-TYPE INITIAL STATES

In this section we examine the tripartite entanglement dynamics when the initial states

are GHZ-type states. All initial states have GHZ-symmetry[38] if the parameters are appro-

priately chosen. However, this symmetry is broken due to the effects of environment.

A. Type I

Let us choose the initial state in a form

ρ̂TI (0) = |ψI〉〈ψI | (3.1)

where |ψI〉 = a|0〉+beiδ|7〉 with a2+b2 = 1. As commented before |ψI〉 has a GHZ-symmetry

when a2 = b2 = 1/2 and δ = 0. Then the spectral decomposition of ρ̂TI (t) can be read directly
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from Eqs. (2.12) and (2.13) as a form:

ρ̂TI (t) = Λ+|ψ1〉〈ψ1|+Λ−|ψ2〉〈ψ2|+b2P 2
t (1− P 2

t )2 {|1〉〈1|+|2〉〈2|+|4〉〈4|} (3.2)

+b2P 4
t (1− P 2

t ) {|3〉〈3|+|5〉〈5|+|6〉〈6|}

where

Λ± =
1

2

[{
1− 3b2P 2

t (1− P 2
t )
}
±
√

[1− 3b2P 2
t (1− P 2

t )]
2 − 4b4P 6

t (1− P 2
t )2
]

(3.3)

and

|ψ1〉 =
1

NI

(
x|0〉+ yeiδ|7〉

)
|ψ2〉 =

1

NI

(
y|0〉 − xeiδ|7〉

)
(3.4)

with

x = 1− b2P 2
t (3− 3P 2

t + 2P 4
t ) +

√
[1− 3b2P 2

t (1− P 2
t )]

2 − 4b4P 6
t (1− P 2

t )2

y = 2abP 2
t (3.5)

and NI =
√
x2 + y2 is a normalization constant.

Since ρ̂TI (t) is a full rank, it seems to be highly difficult to compute the residual entan-

glement (or three-tangle) analytically. However, from Eq. (3.2) one can realize the upper

bound of τABC as

τABC ≤
[
1− 3b2P 2

t (1− P 2
t )
] 4x2y2

(x2 + y2)2
. (3.6)

It is worthwhile noting that ρ̂TI (t) does not have the GHZ-symmetry even at a2 = b2 = 1/2

and δ = 0. Thus, the symmetry which ρ̂TI (0) has is broken due to the effect of environment.

In order to explore the tripartite entanglement dynamics on the analytical ground, we

compute the π-tangle of ρ̂TI (t). Using Eq. (1.6) it is straightforward to compute the induced

bipartite entanglement quantities NA(BC), NB(AC), and N(AB)C . One can show that they are

all the same with

NA(BC) = NB(AC) = N(AB)C = max [Q(t), 0] , (3.7)

where

Q(t) =
√
b4P 4

t (1− P 2
t )2(1− 2P 2

t )2 + 4a2b2P 6
t − b2P 2

t (1− P 2
t ). (3.8)

One can also show the two-tangles completely vanish, i.e. NAB = NAC = NBC = 0, easily.

Thus the π-tangle of ρ̂TI (t) is

πIGHZ(t) = N 2
A(BC). (3.9)
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FIG. 1: (Color online) The π-tangle of ρ̂TI (t) as a function of the parameters γ0t and a2 when the

state interacts with the Markovian and non-Markovian environments. We choose λ as (a) λ = 3γ0

and (b) λ = 0.01γ0.

Eq. (3.7) guarantees that regardless of Markovian or non-Markovian environment πIGHZ(t)

becomes zero if an inequality

a2 ≤ (1− P 2
t )3

1 + (1− P 2
t )3

(3.10)

holds because Q(t) becomes negative in this condition.

Now, let us examine the dynamics of the tripartite entanglement for ρ̂TI (t) when the

quantum system interacts with Markovian environment. Since Pt in Eq. (2.10) decays

exponentially in time, one can expect that the tripartite entanglement exhibits an asymptotic

decay, i.e. decay with the half-life rule, similarly. In fact, this is true when the inequality

(3.10) is violated. If the inequality holds at t ≥ t∗, the tripartite entanglement becomes

zero at t = t∗ abruptly. This is an ESD phenomenon. If the inequality does not hold for all

time, the tripartite entanglement decays with the half-life rule as expected. This is shown

clearly in Fig. 1(a), where πIGHZ(t) is plotted as a function of γ0t and a2. In this figure

we choose λ = 3γ0. As expected, the tripartite entanglement decreases with increasing γ0t.

When a2 = 0.6 (blue line) it decays exponentially in γ0t with the half-life rule. For a2 = 0.2

(red line), however, it becomes zero in the region γ0t ≥ 1.21.

For non-Markovian regime the decay behavior of the tripartite entanglement in time is

completely different. This difference arises due to combination of the inequality (3.10) and

difference form of Pt. Since Pt in Eq. (2.11) exhibits an underdamping behavior in time

with zeros at tn = 2[nπ − tan−1(d/λ)/d] (n = 1, 2, · · · ), one may expect that the tripartite

entanglement also decays with oscillatory behavior. This is true when the inequality (3.10)
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is violated for all time. This behavior is shown as a blue line (a2 = 0.6) of Fig. 1(b). In

this figure we choose λ = 0.01γ0. If the inequality holds for some time interval t∗1 ≤ t ≤ t∗2,

the tripartite entanglement becomes zero in this interval. After this time interval, however,

nonzero tripartite entanglement reappears, which makes a revival of entanglement after a

finite period of time of its complete disappearance. This is shown as a red line (a2 = 0.3) of

Fig. 1(b).

B. Type II

Let us choose the initial state in a form

ρ̂TII(0) = |ψII〉〈ψII | (3.11)

where |ψII〉 = a|1〉 + beiδ|6〉 with a2 + b2 = 1. Since |ψI〉 = 11 ⊗ 11 ⊗ σx|ψII〉, (11 ⊗ 11 ⊗

σx)ρ̂
T
II(0)(11⊗ 11⊗ σx)† has a GHZ-symmetry provided that a2 = b2 = 1/2 and δ = 0.

Using Eqs. (2.12) and (2.13) one can show that the spectral decomposition of ρ̂TII(t)

becomes

ρ̂TII(t) = λ2|φII〉〈φII |+(1−P 2
t )
[
a2 + b2(1− P 2

t )
]
|0〉〈0|+b2P 2

t (1−P 2
t ) (|2〉〈2|+|4〉〈4|) (3.12)

where

λ2 = P 2
t (a2 + b2P 2

t ) (3.13)

|φII〉 =
1√

a2 + b2P 2
t

(
a|1〉+ bPte

iδ|6〉
)
.

Unlike the case of type I ρ̂TII(t) is rank four tensor. From Eq. (3.12) one can derive the

upper bound of τABC for ρ̂TII(t), which is

τABC ≤
4a2b2P 4

t

a2 + b2P 2
t

. (3.14)

The negativities NA(BC), NB(AC), and N(AB)C of ρ̂TII(t) can be computed by making use

of Eq. (1.6). The final expressions are

NA(BC) = NB(AC) =
√
b4P 4

t (1− P 2
t )2 + 4a2b2P 6

t − b2P 2
t (1− P 2

t ) (3.15)

N(AB)C =

√
(1− P 2

t )2 [a2 + b2(1− P 2
t )]

2
+ 4a2b2P 6

t − (1− P 2
t )
[
a2 + b2(1− P 2

t )
]
.
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It is also easy to show NAB = NAC = NBC = 0. Thus the π-tangle of ρ̂TII(t) is

πIIGHZ(t) =
1

3

[
2N 2

A(BC) +N 2
(AB)C

]
. (3.16)

When t = 0, πIIGHZ(0) becomes 4a2b2 and it reduces to zero as t → ∞. Of course, the

entanglement of ρ̂TII(t) is completely disentangled at t = tn (n = 1, 2, · · · ) in the non-

Markovian regime.

C. Type III

Let us choose the initial state in a form

ρ̂TIII(0) = |ψIII〉〈ψIII | (3.17)

where |ψIII〉 = a|3〉 + beiδ|4〉 with a2 + b2 = 1. Since |ψI〉 = 11 ⊗ σx ⊗ σx|ψIII〉, (11 ⊗ σx ⊗

σx)ρ̂
T
III(0)(11⊗ σx ⊗ σx)† has a GHZ-symmetry provided that a2 = b2 = 1/2 and δ = 0.

Using Eqs. (2.12) and (2.13) one can show that the spectral decomposition of ρ̂TIII(t)

becomes

ρ̂TIII(t) = λ3|φIII〉〈φIII |+(1− P 2
t )
[
a2(1− P 2

t ) + b2
]
|0〉〈0|+a2P 2

t (1− P 2
t ) (|1〉〈1|+|2〉〈2|)

(3.18)

where

λ3 = P 2
t (a2P 2

t + b2) (3.19)

|φIII〉 =
1√

a2P 2
t + b2

(
aPt|3〉+ beiδ|4〉

)
.

Unlike the case of type I ρ̂TIII(t) is rank four tensor. From Eq. (3.18) one can derive the

upper bound of τABC for ρ̂TIII(t), which is

τABC ≤
4a2b2P 4

t

a2P 2
t + b2

. (3.20)

The negativities NA(BC), NB(AC), and N(AB)C of ρ̂TIII(t) can be computed by making use

of Eq. (1.6), whose explicit expressions are

NA(BC) =

√
(1− P 2

t )2 [a2(1− P 2
t ) + b2]

2
+ 4a2b2P 6

t − (1− P 2
t )
[
a2(1− P 2

t ) + b2
]

NB(AC) = N(AB)C =
√
a4P 4

t (1− P 2
t )2 + 4a2b2P 6

t − a2P 2
t (1− P 2

t ). (3.21)
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It is of interest to note that NA(BC) and NB(AC) of type III is the same with N(AB)C and

NA(BC) of type II with a↔ b respectively. It is easy to show NAB = NAC = NBC = 0. Thus

the π-tangle of ρ̂TIII(t) is

πIIIGHZ(t) =
1

3

[
N 2
A(BC) + 2N 2

B(AC)

]
. (3.22)

One can also consider different types of initial GHZ-type states. For example, one can

consider ρ̂TIV (0) = |ψIV 〉〈ψIV |, where |ψIV 〉 = a|2〉+ beiδ|5〉. Although, in this case, ρ̂TIV (t) is

different from ρ̂TII(t), one can show that its π-tangle is exactly the same with that of type

II. Thus, this case is not discussed in detail.

FIG. 2: (Color online) The π-tangle for the initial states (a) a|001〉 + beiδ|110〉 and (b) a|011〉 +

beiδ|100〉 as a function of the parameters γ0t and a2. We choose λ as a λ = 0.01γ0.

As shown in Eqs. (3.16) and (3.22) the dynamics of the tripartite entanglements for

type II and type III are not expressed in terms of an inequality like Eq. (3.10) in type I.

Thus, if |ψII〉 and |ψIII〉 interact with the Markovian surroundings, these entanglements

decay exponentially with the half-life rule. This means that there is no ESD phenomenon

in these cases. If |ψII〉 and |ψIII〉 interact with the non-Markovian environment, πIIGHZ(t)

and πIIIGHZ(t) should exhibit an oscillatory behavior with rapid decrease of amplitude due to

Pt in Eq. (2.11). This can be seen in Fig. 2, where πIIGHZ(t) and πIIIGHZ(t) are plotted as a

function of dimensionless parameter γ0t and a2. We choose λ as a λ = 0.01γ0. As expected

the tripartite entanglement reduces to zero with increasing time with oscillatory behavior.

The π-tangles πIGHZ(t) , πIIGHZ(t) , and πIIIGHZ(t) are compared in Fig. 3 when λ/γ0 = 0.001.

They are represented by red solid, black dashed, and blue dotted lines respectively. Fig.

3(a) and Fig. 3(b) correspond to a2 = 0.1 and a2 = 0.9. Both figures clearly show the revival

13



FIG. 3: (Color online) The γ0t dependence of πIGHZ(t) (red solid), πIIGHZ(t) (black dashed), and

πIIIGHZ(t) (blue dotted) when (a) a2 = 0.1 and (b) a2 = 0.9. We choose λ as a λ = 0.001γ0.

of the tripartite entanglement, after a finite period of time of complete disappearance. The

revival phenomenon seems to be mainly due to the memory effect of the non-Markovian

environment. It is of interest to note that while πIIIGHZ(t) ≥ πIIGHZ(t) ≥ πIGHZ(t) when

a2 = 0.1, the order is changed as πIGHZ(t) ≥ πIIGHZ(t) ≥ πIIIGHZ(t) when a2 = 0.9.

IV. ENTANGLEMENT DYNAMICS OF W-TYPE INITIAL STATES

In this section we examine the tripartite entanglement dynamics when the initial states

are two W-type states. Both initial states are LU to each other. However, their entanglement

dynamics are different due to Eqs. (2.12) and (2.13).

A. Type I

In this subsection we choose the initial state as

ρ̂WI (0) = |W1〉〈W1| (4.1)

where |W1〉 = a|1〉 + beiδ1|2〉 + ceiδ2|4〉 with a2 + b2 + c2 = 1. Then, it is straightforward to

show that the spectral decomposition of ρ̂WI (t) is

ρ̂WI (t) = (1− P 2
t )|0〉〈0|+P 2

t |W1〉〈W1|. (4.2)

Eq. (4.2) guarantees that the residual entanglement and three-tangle of ρ̂WI (t) are zero

because the spectral decomposition exactly coincides with the optimal decomposition.

14



By making use of Eq. (1.6) one can compute the induced bipartite entanglement quan-

tities NA(BC), NB(AC), and N(AB)C of ρ̂WI (t) directly, whose expressions are

NA(BC) =
√

(1− P 2
t )2 + 4c2(a2 + b2)P 4

t − (1− P 2
t )

NB(AC) =
√

(1− P 2
t )2 + 4b2(a2 + c2)P 4

t − (1− P 2
t ) (4.3)

N(AB)C =
√

(1− P 2
t )2 + 4a2(b2 + c2)P 4

t − (1− P 2
t ).

Also, the two tangles NAB, NAC , and NBC become

NAB =

√
[(1− P 2

t ) + a2P 2
t ]

2
+ 4b2c2P 4

t −
[
(1− P 2

t ) + a2P 2
t

]
NAC =

√
[(1− P 2

t ) + b2P 2
t ]

2
+ 4a2c2P 4

t −
[
(1− P 2

t ) + b2P 2
t

]
(4.4)

NBC =

√
[(1− P 2

t ) + c2P 2
t ]

2
+ 4a2b2P 4

t −
[
(1− P 2

t ) + c2P 2
t

]
.

Thus, using Eqs. (1.7) and (1.8) one can compute the π-tangle of ρ̂WI (t), whose explicit

expression is

πIW (t) =
2

3

[
2
[
(1− P 2

t ) + a2P 2
t

]√
[(1− P 2

t ) + a2P 2
t ]

2
+ 4b2c2P 4

t

+2
[
(1− P 2

t ) + b2P 2
t

]√
[(1− P 2

t ) + b2P 2
t ]

2
+ 4a2c2P 4

t

+2
[
(1− P 2

t ) + c2P 2
t

]√
[(1− P 2

t ) + c2P 2
t ]

2
+ 4a2b2P 4

t (4.5)

−(1− P 2
t )

{√
(1− P 2

t )2 + 4a2(b2 + c2)P 4
t

+
√

(1− P 2
t )2 + 4b2(a2 + c2)P 4

t +
√

(1− P 2
t )2 + 4c2(a2 + b2)P 4

t

}
−2(a4 + b4 + c4)P 4

t − (1− P 2
t )(3 + P 2

t )

]
.

When t = 0, Eq. (4.5) reduces to

πIW (0) =
4

3

[
a2
√
a4 + 4b2c2 + b2

√
b4 + 4a2c2 + c2

√
c4 + 4a2b2 − (a4 + b4 + c4)

]
, (4.6)

which exactly coincides with a result of Ref.[34]. Of course, when t = tn(n = 1, 2, · · · ) and

t =∞, the entanglement of ρ̂WI (t) is completely disentangled in the non-Markovian regime.

B. Type II

In this subsection we choose the initial state as

ρ̂WII (0) = |W2〉〈W2| (4.7)
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where |W2〉 = a|6〉+ beiδ1|5〉+ ceiδ2|3〉 with a2 + b2 + c2 = 1. This initial state is LU to |W1〉

because of |W2〉 = (σx ⊗ σx ⊗ σx)|W1〉. Then, by making use of Eqs. (2.12) and (2.13) it is

straightforward to show that ρ̂WII (t) is

ρ̂WII (t) = (1− P 2
t )2|0〉〈0|+P 4

t |W2〉〈W2|+2P 2
t (1− P 2

t )σII(t) (4.8)

where

σII(t) =
1

2

[
(b2 + c2)|1〉〈1|+(a2 + c2)|2〉〈2|+(a2 + b2)|4〉〈4|

+ab
(
eiδ1|1〉〈2|+e−iδ1|2〉〈1|

)
+ ac

(
eiδ2|1〉〈4|+e−iδ2|4〉〈1|

)
(4.9)

+bc
(
e−i(δ1−δ2)|2〉〈4|+ei(δ1−δ2)|4〉〈2|

) ]
.

The spectral decomposition of σII(t) cannot be derived analytically. Also, analytic compu-

tation of π-tangle for ρ̂WII (t) is impossible. Thus, we have to reply on the numerical approach

for computation of π-tangle.

0.0 0.5 1.0 1.5 2.0

0.0

0.1

0.2

0.3

0.4

0.5

γ0 t

FIG. 4: (Color online) The γ0t dependence of πIW (red line) and πIIW (blue line) when |W1〉 and

|W2〉 interact with the Markovian environment. We choose λ = 3γ0 and a2 = b2 = c2 = 1/3.

However, some special cases allow the analytic computation. In this paper we consider

a special case a2 = b2 = c2 = 1/3. In this case the spectral decomposition of σII(t) can be

derived as

σII(t) =
2

3
|α1〉〈α1|+

1

6
|α2〉〈α2|+

1

6
|α3〉〈α3| (4.10)
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where

|α1〉 =
1√
3

(
|1〉+ e−iδ1|2〉+ e−iδ2 |4〉

)
|α2〉 =

1√
2

(
|1〉 − e−iδ2|4〉

)
(4.11)

|α3〉 =
1√
6

(
|1〉 − 2e−iδ1|2〉+ e−iδ2|4〉

)
.

Thus, Eqs. (4.8) and (4.10) imply that ρ̂WII (t) with a2 = b2 = c2 = 1/3 is rank-5 tensor,

three of them are W-states and the remaining ones are fully-separable and bi-separable

states. Thus, its residual entanglement and three-tangles are zero.

Using Eq. (1.6) one can show that NA(BC), NB(AC), and N(AB)C are all identical as

NA(BC) = NB(AC) = N(AB)C =
1

3
P 2
t

[√
9− 18P 2

t + 17P 4
t − 3(1− P 2

t )
]
. (4.12)

Also NAB, NAC , and NBC are all identical as

NAB = NAC = NBC =


√

9−24P 2
t +20P 4

t +2P 2
t (2−P 2

t )

3
− 1 P 2

t ≥ 2−
√

2

0 P 2
t ≤ 2−

√
2.

(4.13)

Thus, the π-tangle for ρ̂WII (t) with a2 = b2 = c2 = 1/3 is given by πIIW = N 2
A(BC) − 2N 2

AB.

In Fig. 4 we plot πIW (t) (red line) and πIIW (t) (blue line) as a function of γ0t when |W1〉 and

|W2〉 interact with the Markovian environment. We choose λ = 3γ0 and a2 = b2 = c2 = 1/3.

As expected both reduce to zero with the half-life rule. It is of interest to note πIW (t) ≥ πIIW (t)

in full range of time. This means that |W1〉 is more robust than |W2〉 against the Markovian

environment.

In Fig. 5(a) we plot πIW (t) as a function of a2 and γ0t when |W1〉 is embedded in the

non-Markovian environment. We choose c2 = 1/3 and λ/γ0 = 0.01. As expected the π-

tangle reduces to zero as t → ∞ with an oscillatory behavior. To compare πIW (t) with

πIIW (t) we plot both π-tangles as a function of γ0t in Fig. 5(b). In this figure we choose

a2 = b2 = c2 = 1/3 and λ/γ0 = 0.001. The π-tangles πIW (t) and πIIW (t) are plotted as solid

and dashed lines respectively. In this case, as in the other cases, the revival of entanglement

occurs after complete disappearance. It is interesting to note that like a Markovian case

ρ̂WI (t) is more robust than ρ̂WII (t) against non-Markovian environment.
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FIG. 5: (Color online) (a) The a2 and γ0t dependence of πIW (t) when c2 = 1/3. We choose

λ = 0.01γ0. (b) The γ0t dependence of πWI (t) (solid line) and πWII (t) (dashed line) when a2 =

b2 = c2 = 1/3. We choose λ = 0.001γ0. This figure implies that ρ̂WI (t) is more robust against the

environment than ρ̂WII (t).

V. CONCLUSIONS

In this paper we have examined the tripartite entanglement dynamics when each party

is entangled with other parties initially, but they locally interact with their own Markovian

or non-Markovian environment. First, we have considered three GHZ-type initial states

|ψI〉 = a|000〉+beiδ|111〉, |ψII〉 = a|001〉+beiδ|110〉, and |ψIII〉 = a|011〉+beiδ|100〉. All states

are LU to each other. It turns out that the GHZ symmetry of the initial states is broken due

to the effect of environment. We have computed the corresponding π-tangles analytically

at arbitrary time t in Eqs. (3.9), (3.16), and (3.22). It was shown that while the ESD

phenomenon occurs for type I, the entanglement dynamics for the remaining types exhibits

an exponential decay in the Markovian regime. In the non-Markovian regime the π-tangles

completely vanish when tn = 2[nπ − tan−1(d/λ)/d] (n = 1, 2, · · · ) and t → ∞. As shown

in Fig. 3 the revival phenomenon of entanglement occurs after complete disappearance of

entanglement. Based on the analytical results it was shown that while the robustness order

against the effect of reservoir is |ψI〉, |ψII〉, |ψIII〉 for large a2 region, this order is reversed

for small a2 region.

We also have examined the tripartite entanglement dynamics for two W-type initial

states |W1〉 = a|001〉+ beiδ1|010〉+ ceiδ2|100〉 and |W2〉 = a|110〉+ beiδ1|101〉+ ceiδ2 |011〉 with

a2 + b2 + c2 = 1. Like GHZ-type initial states they are LU to each other. For initial |W1〉
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FIG. 6: (Color online) The γ0t dependence of concurrences Eq.(5.1) and Eq. (5.2) when a2 = b2 =

c2 = 1/3. (a) In this figure we choose λ = 3γ0. This shows that while bipartite entanglement

dynamics for type I (red line) decays exponentially with the half-life rule, that for type II (blue

line) exhibits an ESD. (b) In this figure we choose λ = 0.01γ0. Although both entanglements decay

in time, the decay rate for type II (blue line) is much faster than that for type I (red line).

state the π-tangle is analytically computed in Eq. (4.5). Since, however, |W2〉 propagates to

higher-rank state with the lapse of time, the analytic computation is impossible except few

special cases. Thus, we have computed the π-tangle analytically for special case a2 = b2 =

c2 = 1/3. In Fig. 4 and Fig. 5 it was shown that |W1〉 is more robust than |W2〉 against the

Markovian and non-Markovian environments. The bipartite entanglements measured by the

concurrence[23] for ρ̂WI (t) and ρ̂WII (t) are

CIAB(t) = 2|bc|P 2
t CIAC(t) = 2|ac|P 2

t CIBC(t) = 2|ab|P 2
t (5.1)

and

CIIAB(t) = 2P 2
t max

[
0, |bc| − |a|

√
(1− P 2

t )(1− a2P 2
t )

]
CIIAC(t) = 2P 2

t max

[
0, |ac| − |b|

√
(1− P 2

t )(1− b2P 2
t )

]
(5.2)

CIIBC(t) = 2P 2
t max

[
0, |ab| − |c|

√
(1− P 2

t )(1− c2P 2
t )

]
.

One can show CI ≥ CII in the entire range of time like a tripartite entanglement regardless

of Markovian or non-Markovian environment. The γ0t-dependence of the concurrences is

plotted in Fig. 6 as red line for type I and blue line for type II when (a) Markovian (λ = 3γ0)

and (b) non-Markovian (λ = 0.01γ0) environments are introduced. The Fig. 6(a) shows that
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while the entanglement for type I exhibits an exponential decay with the half-life rule, that

for type II exhibits an ESD. For non-Markovian case the decay rate for type II is much faster

than that for type I although both exhibit a revival phenomenon of entanglement.

It is of interest to study the effect of non-Markovian environment when the initial state

is a rank-2 mixture

ρ(p) = p|GHZ〉〈GHZ|+(1− p)|W〉〈W| (5.3)

where |GHZ〉 = (|000〉 + |111〉)/
√

2 and |W〉 = (|001〉 + |010〉 + |100〉)/
√

3. The residual

entanglement of ρ(p) is known as

τ(p) =


0 0 ≤ p ≤ p0

gI(p) p0 ≤ p ≤ p1

gII(p) p1 ≤ p ≤ 1

(5.4)

where

p0 =
4 3
√

2

3 + 4 3
√

2
= 0.626851 · · · p1 =

1

2
+

3
√

465

310
= 0.70868 · · · (5.5)

gI(p) = p2 − 8
√

6

9

√
p(1− p)3 gII(p) = 1− (1− p)

(
3

2
+

1

18

√
465

)
.

It is interesting, at least for us, how the non-Markovian environment modifies Coffman-

Kundu-Wootters inequality 4 min[det(ρA)] ≥ C(ρAB)2 +C(ρAC)2 in this model. Similar issue

was discussed in Ref. [44].

Since we have derived the π-tangles analytically, we tried to find the entanglement

invariants[18, 30], which was originally found in four-qubit system. In our three-qubit sys-

tems we cannot find any invariants. It is of interest to examine the entanglement invariants

in the higher-qubit and qudit systems.
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