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Abstract

An entanglement monotone, which is invariant under the determinant 1 SLOCC operations and

measures the true quadripartite entanglement, is explicitly constructed.
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Recently, much attention is being paid to quantum technology[1]. Most important

notion in quantum technology is a quantum correlation, which is usually represented by

entanglement[2] of given quantum states. As shown for last two decades it plays a central

role in quantum teleportation[3], superdense coding[4], quantum cloning[5], and quantum

cryptography[6]. It is also quantum entanglement, which makes the quantum computer out-

perform the classical one[7]. Thus, it is very important to understand how to quantify and

how to characterize the entanglement.

For bipartite quantum system many entanglement measures were constructed before such

as distillable entanglement[8], entanglement of formation (EoF)[8], and relative entropy of

entanglement (REE)[9, 10]. Especially, for two-qubit system, EoF is expressed as[11]

E(C) = h

(
1 +
√

1− C2

2

)
(1)

where h(x) is a binary entropy function h(x) = −x lnx − (1 − x) ln(1 − x) and C is called

the concurrence. For two-qubit pure state |ψ〉 = ψij|ij〉 with (i, j = 0, 1), C is given by

C = |εi1i2εj1j2ψi1j1ψi2j2| = 2|ψ00ψ11 − ψ01ψ10| (2)

where the Einstein convention is understood and εµν is an antisymmetric tensor.

Although quantification of the entanglement is important, it is equally important to clas-

sify the entanglement, i.e., to classify the quantum states into the same type of entanglement.

The most popular classification scheme is a classification through a stochastic local opera-

tion and classical communication (SLOCC)[12]. If |ψ〉 and |φ〉 are in same SLOCC class,

this means that |ψ〉 and |φ〉 can be used to implement same task of quantum information

theory although the probability of success for this task is different. Mathematically, if two

n-party states |ψ〉 and |φ〉 are in the same SLOCC class, they are related to each other by

|ψ〉 = A1 ⊗ A2 ⊗ · · · ⊗ An|φ〉 with {Aj} being arbitrary invertible local operators1. How-

ever, it is more useful to restrict ourselves to SLOCC transformation where all {Aj} belong

to SL(2, C), the group of 2 × 2 complex matrices having determinant equal to 1. In the

three-qubit pure-state system it was shown[13] that there are six different SLOCC classes,

fully-separable, three bi-separable, W, and Greenberger-Horne-Zeilinger (GHZ) classes.

Classification through the SLOCC transformation enables us to construct the entan-

glement measures. As Ref.[14] showed, any linearly homogeneous positive function of a

1 For complete proof on the connection between SLOCC and local operations see Appendix A of Ref.[13].
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pure state that is invariant under determinant 1 SLOCC operations is an entanglement

monotone. One can show that C in Eq. (2) is such an entanglement monotone as fol-

lows. Let |ψ〉 = ψij|ij〉 with i, j = 0, 1. Then, |ψ̃〉 ≡ (A ⊗ B)|ψ〉 = ψ̃ij|ij〉, where

ψ̃ij = ψαβAiαBjβ. Using εijMiαMjβ = (detM)εαβ for arbitrary matrix M , it is easy to

show εi1i2εj1j2ψ̃i1j1ψ̃i2j2 = (detA)(detB)εi1i2εj1j2ψi1j1ψi2j2 , which implies that C is invariant

under determinant 1 SLOCC operations.

This theorem in Ref.[14] can be applied to the three-qubit system. If |ψ〉 = ψijk|ijk〉, the

invariant monotone is

τ3 =

∣∣∣∣2εi1i2εi3i4εj1j2εj3j4εk1k3εk2k4ψi1j1k1ψi2j2k2ψi3j3k3ψi4j4k4

∣∣∣∣1/2. (3)

This is exactly identical with a square root of the residual entanglement2 introduced in

Ref.[15]. The three-tangle (3) has following properties. If |ψ〉 is a fully-separable or partially-

separable state, its three-tangle completely vanishes. Thus, τ3 measures the genuine 3-way

entanglement. For 3-way entanglement it gives τ3(GHZ3) = 1 and τ3(W3) = 0, where

|GHZ3〉
1√
2

(|000〉+ |111〉) |W3〉 =
1√
3

(|001〉+ |010〉+ |100〉). (4)

For mixed state quantification of the entanglement is usually defined via a convex-roof

method[8, 16]. Although the concurrence for an arbitrary two-qubit mixed state can be, in

principle, computed following the procedure introduced in Ref.[11], still we do not know how

to compute the three-tangle (or residual entanglement) for an arbitrary three-qubit mixed

state3. However, the residual entanglement for several special mixtures were computed in

Ref.[17]. More recently, the three-tangle for all GHZ-symmetric states[18] was computed

analytically[19].

It is also possible to construct the concurrence-based monotones in the higher-qubit

systems. In the higher-qubit systems, however, there are many independent monotones

because the number of independent SLOCC-invariant monotones is equal to the degrees of

freedom of pure quantum state minus the degrees of freedom induced by the determinant 1

SLOCC operations. For example, there are 2(2n−1)−6n independent monotones in n-qubit

system. Thus, there are 6 independent concurrence-based monotones in four-qubit system.

2 In this paper we will call τ3 as a three-tangle and τ23 as a residual entanglement.
3 Even in two-qubit system still we do not know how to compute the REE for arbitrary mixed states.
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If |ψ〉 = ψijk`|ijk`〉 with i, j, k, ` = 0, 1, following two concurrence-based monotones were

presented in Ref.[14];

τ4,1 =

∣∣∣∣εi1i2εj1j2εk1k2ε`1`2ψi1j1k1`1ψi2j2k2`2

∣∣∣∣ (5)

τ4,2 =

∣∣∣∣2εi1i2εi3i4εj1j3εj2j4εk1k3εk2k4ε`1`2ε`3`4ψi1j1k1`1ψi2j2k2`2ψi3j3k3`3ψi4j4k4`4

∣∣∣∣1/2.
Other four more independent entanglement monotones can be obtained by including more

factors of ψijk`. As expected τ4,1(GHZ4) = τ4,2(GHZ4) = 1 and τ4,1(W4) = τ4,2(W4) = 0,

where

|GHZ4〉 =
1√
2

(|0000〉+ |1111〉) |W4〉 =
1

2
(|0001〉+ |0010〉+ |0100〉+ |1000〉). (6)

However, there is a striking difference between τ4,j (j = 1, 2) and three-tangle. While τ3

vanishes for partially entangled state, τ4,1 and τ4,2 do not completely vanish for some cases.

For example, for |BB〉 = (1/
√

2)(|00〉+ |11〉)⊗ (1/
√

2)(|00〉+ |11〉) τ4,1 and τ4,2 become

τ4,1(BB) = 1 τ4,2(BB) =
1√
2
. (7)

This is mainly due to the fact that |BB〉 is a normal form[14, 20] in four-qubit system. In

this sense, τ4,1 and τ4.2 cannot measure the genuine 4-way entanglement.

Is there a concurrence-based entanglement monotone, which vanishes for all partially

entangled four qubit states and gives maximal value for the maximal entangled state |GHZ4〉?

Such entanglement monotones exist and the simplest one is

τ4,3 =

∣∣∣∣εi1i2εi3i4(εj1j3εj2j4+εj1j4εj2j3)(εk1k3εk2k4+εk1k4εk2k3)ε`1`2ε`3`4ψi1j1k1`1 · · ·ψi4j4k4`4

∣∣∣∣1/2. (8)

Using a formula εi1i2···iNMi1j1Mi2j2 · · ·MiN jN = (detM)εj1j2···jN where εi1i2···iN is a completely

antisymmetric tensor, it is easy to show that τ4,3 is invariant under the determinant 1 SLOCC

operations. Furthermore, it is straightforward to show

τ4,3(GHZ4) = 1 τ4,3(W4) = 0 τ4,3(BB) = 0. (9)

In order to confirm that τ4,3 vanishes for all partially entangled states, let us consider the

following general partially entangled states

|ϕ2⊗2〉ABCD = (aij|ij〉)Γ1Γ2 ⊗ (bk`|k`〉)Γ3Γ4 (10)

|ϕ3⊗1〉ABCD = (ai|i〉)Γ1(bjk`|jk`〉)Γ2Γ3Γ4
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where Γi denotes any party in {A,B,C,D}. It is possible to show τ4,1(ϕ2⊗2) =
√

2τ4,2(ϕ2⊗2) = 4|(a00a11 − a01a10)(b00b11 − b01b10)| and τ4,1(ϕ3⊗1) = τ4,2(ϕ3⊗1) = 0. Thus,

τ4,1 and τ4,2 can be nonzero for partially entangled 2 ⊗ 2 states. However, one can show

τ4,3(ϕ2⊗2) = τ4,3(ϕ3⊗1) = 0. Therefore, this fact with Eq. (9) guarantees that τ4,3 measures

the genuine quadripartite entanglement.

SLOCC τ4,1 τ4,2 τ4,3

Labc2
|a2+b2+2c2|

1+|a|2+|b|2+2|c|2
|a4+6a2b2+b4+4c2{2c2+3(a−b)2}|1/2

√
2(1+|a|2+|b|2+2|c|2)

2|(c2−ab)2+2c2(a−b)2|1/2

1+|a|2+|b|2+2|c|2

La2b2
|a2+b2|

1+|a|2+|b|2
|a4+b4|1/2

1+|a|2+|b|2
|a2−b2|

1+|a|2+|b|2

Lab3
|3a2+b2|

2+3|a|2+|b|2
|12a2(a−b)2+(3a2+b2)2|1/2

√
2(2+3|a|2+|b|2)

2
√

3|a||a−b|
2+3|a|2+|b|2

La4

4|a|2
3+4|a|2

2
√

2|a|2
3+4|a|2 0

La203⊕1̄

2|a|2
3+2|a|2

2|a|2
3+2|a|2

2|a|2
3+2|a|2

L05⊕3̄
0 0 0

L07⊕1̄
0 0 0

L03⊕1̄03⊕1̄
0 0 0

Table I: Four-tangles τ4,1, τ4,2, and τ4,3 for various SLOCC equivalent classes

For completeness let us consider the Gabcd class in the SLOCC classification of four-qubit

pure-state system introduced in Ref.[21]4 ;

Gabcd =
1√

|a|2 + |b|2 + |c|2 + |d|2

[
a+ d

2
(|0000〉+ |1111〉) (11)

+
a− d

2
(|0011〉+ |1100〉) +

b+ c

2
(|0101〉+ |1010〉) +

b− c
2

(|0110〉+ |1001〉)
]

where the parameters a, b, c, and d are complex numbers with nonnegative real part. Among

nine SLOCC classes Gabcd is special in the sense that it is set of normal states[14, 20], i.e.,

all local states are completely mixed. Moreover, it involves the maximally entangled state

|GHZ4〉 when (a = d = 1, b = c = 0) and two EPR pairs when (a = 1, b = c = d = 0) or

4 The SLOCC classification in four-qubit pure-state system was discussed in several more papers[22]. Unlike,

however, two- and three-qubit cases the results of Ref.[21, 22] seem to be contradictory with each other.

Although some people asserts that this contradiction is mainly due to the different approach, we think

still our understanding on the four-qubit entanglement is incomplete.
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a = b = c = d = 1. The four-tangles τ4,1 and τ4,2 for Gabcd are

τ4,1 =
|a2 + b2 + c2 + d2|
|a|2 + |b|2 + |c|2 + |d|2

(12)

τ4,2 =
|(a2 + b2 + c2 + d2)2 + 4{(ab− cd)2 + (ac− bd)2 + (ad− bc)2}|1/2√

2(|a|2 + |b|2 + |c|2 + |d|2)
.

Using Eq. (12) it is easy to reproduce Eq. (7). Especially, from the aspect of τ4,1 all states

in Gabcd class are maximally entangled provided that a, b, c, and d are real. The four-tangle

τ4,3 for Gabcd is

τ4,3 =
2|(ab− cd)2 + (ac− bd)2 + (ad− bc)2|1/2

|a|2 + |b|2 + |c|2 + |d|2
. (13)

Using Eq. (13) it is easy to show that τ4,3 for all two EPR pairs vanishes as expected. The

four-tangles τ4,1, τ4,2, and τ4,3 for other SLOCC classes are summarized in Table I.

In this short note we construct an concurrence-based monotone, which measures the

true 4-way entanglement in the qubit system. This measure can be used to quantify the

quadripartite entanglement for various mixed states such as ρ = p|GHZ4〉〈GHZ4|+(1 −

p)|BB〉〈BB|. This will be explored elsewhere.
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