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1. Introduction

Functional inclusion is a tool for defining many notions of set-valued analysis, e.g., linear, affine, convex, concave,
subadditive, superadditive set-valued maps. Finding a selection of such set-valued maps, with some special properties, is
one of the main problems of set-valued analysis (see [1]). The stability theory of functional equations leads in some cases to
such problems and solving them provides Hyers-Ulam stability results.

It seems to be a common conviction that the investigation of the stability of functional equations started with a result of
Hyers [2], published in 1941, as a solution to a question posed by Ulam in 1940 (see [3]); let us recall the result of Hyers.

Let X be a linear normed space, Y a Banach space and ¢ > 0. Then for every function g : X — Y satisfying the inequality

lex+y) —gx) —gWll <&, xyeX, (1
there exists a unique additive function f : X — Y such that
lg®) —fll <e, xeX. (2)

However, we are already aware of an earlier result of this kind, due to Pdlya and Szegé [4, Teil I, Aufgabe 99] (cf, e.g.,
[5, p. 125]). For some recent examples of discussions, extensions, generalizations and critiques of the Hyers-Ulam stability
we refer the reader to, e.g., [6-10].

Smajdor [11,12] and Gajda and Ger [13] observed that if g is a solution of (1), then the set-valued map F : X — 2Y (2
denotes the set of all nonempty subsets of Y), given by

F(x) =g(x)+B(0,¢), xeX, (3)

* Corresponding author.
E-mail addresses: jbrzdek@ap.krakow.pl (J. Brzdek), Popa.Dorian@math.utcluj.ro (D. Popa), xb0408@yahoo.com.cn (B. Xu).

0362-546X/$ - see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.02.2010.08.047


http://dx.doi.org/10.1016/j.na.2010.08.047
http://www.elsevier.com/locate/na
http://www.elsevier.com/locate/na
mailto:jbrzdek@ap.krakow.pl
mailto:Popa.Dorian@math.utcluj.ro
mailto:xb0408@yahoo.com.cn
http://dx.doi.org/10.1016/j.na.2010.08.047

J. Brzdek et al. / Nonlinear Analysis 74 (2011) 324-330 325

where B(0, ¢) is the closed ball in Y centered at 0 and with the radius ¢, satisfies the inclusion F(x + y) € F(x) + F(y) for
X,y € X (i.e,, it is subadditive), and the function f, which satisfies (2), is an additive selection of F (i.e.,f (x +y) = f(x) +f(y)
and f (x) € F(x) forx,y € X).

Now one may ask under what conditions a subadditive set-valued map admits an additive selection. Let us recall a result
of Gajda and Ger [13] (by §(F (x)) we denote the diameter of the set F(x), i.e. §(F (X)) := sup, ,erx 12 — wll).

Theorem 1.1. Let (S, +) be a commutative semigroup with zero element, X a Banach space over Rand F : S — 2X a set-valued
map with convex and closed values such that F(x +y) € F(x) + F(y) for x,y € S and sup,.s 6(F(x)) < oc. Then F admits a
unique additive selection.

Furthermore, the previous result was extended by Nikodem and Popa to set-valued maps satisfying general linear
inclusions of the form

Flax+ By +c¢) S yF(x) +0F(y) +C
aF(x) + BF(y) S F(yx+3dy +c¢) +C,
where «, B, y, 8 are real numbers, X is a real vector space, Y is a real Banach space, F : X — 2¥,c € X, C € 2" (see[14,15]),
and to set-valued maps satisfying a functional inclusion on square symmetric groupoids (see [16,17]).
Itis interesting that, once we have obtained a result of Gajda-Ger type (or the extensions mentioned above), we can prove
the stability of the functional equations corresponding to the functional inclusions considered (for more details see [14,16,15,

17]). Therefore the study of such problems seems to be motivated because we thus get instruments for proving Hyers-Ulam
stability of functional equations. For instance we have the following simple observation.

Theorem 1.2. Let (S, *) be a groupoid, (Z, +) be a commutative group, ¥ € 2¢,Be ¥,andu + B € ¥ forallu € Z. Suppose
that every set-valued map F : S — ¥ satisfying

F(xxy) CF(x) +F(y), Vx,y€S,
admits a selectionf : S — Z withf(x *y) = f(x) + f(y) for x, y € S. Then, for every functiong : S — Z such that

g(xxy) —gkx) —g(y) €B, Vx,y €S, (4)
there is a functionf : S — Z withf(x xy) = f(x) + f(y) for x,y € S and
f(x) —g(kx)eB, VxeS. (5)

Proof. DefineF : S — ¥ by: F(x) = g(x) + Bforx € S. Then

Fxxy)=gx*y) +B < g(x)+8¥) +B+B=FXx) +F(y)
for x,y € S. Hence, by the hypothesis (cf. [13]), thereis f : S — Z with f(x xy) = f(x) + f(y) forx,y € S and
fx) e Fx) =g(x)+BforxeS. O

If Z is a normed space and B := {x € Z : ||x|| < €} (with areal e > 0), then (4), (5) take the forms sup; yes lg(x *
y) —8(x) — g < e andsup,gs |If (x) —gXx)|| < ¢, and from Theorems 1.1 and 1.2 we can derive a generalization of the
classical Hyers stability result in [2].

The goal of this paper is to obtain a result analogous to Theorem 1.1 for set-valued maps F satisfying a linear inclusion in
a single variable of the form

ax)F(p(x)) € F(x) + ¥ (x) + b(x)B,

where a, b, ¢ and  are given functions. This problem is obviously in connection with the Hyers-Ulam stability of the
functional equation

a)f (p(x)) = f(x) + ¥ (x). (6)

For more information on this functional equation and its stability see e.g. [18-26].
2. Main result

In what follows S is a nonempty set, X is a Banach space overafield K € {R,C},a:S - K,b:S — [0,00),¢ : S — S,
¥ : S — X are given functions, and B € 2X is balanced, convex and with §(B) < oc. By ¢/ we denote the j-th iterate of ¢ for
jeNyg=1{0,1,2,...} (where ¢°(x) = xforx € S).Forevery A € KandA, D € 2X wewrite A+ D :={a+b|ac A, b e D)
and AA ;= {Xa | a € A}.

The following properties will often be used in the sequel:

MA+D)=2A+AD, VA De2*
A+ wWAC A+ uA, YAe2X, A ek
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Also, if A is a convex set, then

A+ A=A+ puA, Vi ueR, Au>0.
Moreover

S(A+D) < 8(A) +8(D), VA,De 2%
For more details and other relations see, e.g., [1,27,28].

(7)

In what follows, for each D C X, cl(D) stands for the closure of the set D with respect to the norm in X. Moreover
a_1(%) = 1,8,(0) = [ a(¢/ (%)), cu(®) := b(¢" (X)) —1(x),5_1(X) == 0,and 5, (x) := — Y_}_o %1 ()Y (¢* (%)) for every

neNgxeS.
The main result of this paper is contained in the next theorem.

Theorem 2.1. Assume that F : S — 2X is a set-valued map and the following three conditions hold:
a()F(p(x)) S F(x) + ¥ (x) + b(x)B, VX €S,
liminf8(F(¢" ' (x)))|a,(x)] =0, Vxe€S§,
n—oo

o0
o(X) =Y |a@®] <o, Vxes.
n=0

Write

Pn(x) ==l <an—1(X)F(‘pn(X)) +sn-1(%) + (Z ICk(X)I) B)

k=n

for x € S, n € Ny. Then, for each x € S, the sequence (®,(X))nen, is decreasing (i.e., @,1(x) € Py (x)), the set
- o0
D) =)L)
n=0

has exactly one point and the function f : S — X given by f (x) € 5(x) is the unique solution of Eq. (6) with
fx) € ®g(x) = cl(F(x) + w(x)B), Vxe€S.
Proof. Fix x € S. Replacing x by ¢" (x) in (8) and multiplying both sides of the resulting inclusion by a,_1 (x) we get
@G (OF (@ (%) S an 1 O[F (9" (%) + ¥ (9" (%)) + b(¢" (x))B]
for each n € Ny, which can also be written in the form
@ (OF (@™ (%)) + 52(%) S @q_1 (OF (9" (X)) + $n-1(X) + Ca(X)B.
Let rp(x) := Z,finﬂ |ck(x)| forx € S, n € Ny U {—1}. In view of (10),
nlLrglo cn(x) =0 and nlgglo mm(x) = 0.
Adding r,,(x)B to both sides of (12), we get
@G (OF (@™ (%) + $2(%) + 1a()B S @01 (OF (9" (X)) + $5-1(X) + ra_1(0)B

(11)

(12)

(13)

for n € Ny, because B is convex and balanced (and therefore c,(x)B = |c,(x)|B). Hence, for each x € S, (®;(X))nen, is a

decreasing sequence of closed sets and, in view of (7), (9) and (13), liminf,,_, o, §(®,(x)) = 0. So, the set @ (x) has exactly
one element, according to Cantor’s theorem for decreasing sequences of closed sets in a complete metric space. Clearly, (11)

holds.
Next, we show that f is a solution of (6). To this end observe that

a(x)@n(p(x)) = a()cllan_1(@@)F(@(@" (X)) + sn—1(@ X)) + ra_1(@(x))B]
cl(ay(X)F (" (%)) + sp (%) + 1a(X)B) + ¥ (x)
Dy (%) + ¥ (%)

for each n € Ny, because a(x)B = |a(x)|B. Consequently

N

oo

af (p(x) € [)a®Pn(p(x))

n=0

S (@1 ® + ¥ () = (FK) + ¥ ).

n=0
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It remains to show the uniqueness. To this end, suppose that f;,f, : S — X are solutions to Eq. (6) and fy(x) €
cl(F(x) + w(x)B) for x € S,k = 1, 2. From (6) we get a,_1(X)fx(¢"(x)) = fir(x) — sp_1(x) forn € No,x € S,k = 1,2,
whence

Ifix) = 2001l = lan-1(1llf1 (¢" X)) — fa(@" X))l
< Jan-1 (8 (F(¢" (%)) + an—1(X)|w(¢" (x))3(B)
= a1 ®)[S(F(¢" (X)) + Ta-1(x)8(B).
Hence, by (9) and (13), f1(x) = fo(x) forx € S. O

From Theorem 2.1 there follows, for instance, the next corollary.
Corollary 2.2. Letd : S — K\ {0}, ¥ :S — X, by : S — [0, 00),F : S — 2%,
F(p(x)) € d@)F(x) + Yo(x) +bo(x)B, Vx €S, (14)
. S(F(@"™ (%)
1nfn7 =
[T 1d(¢(x))]
j=0

lim 0, Vxes, (15)

and

n

=0 [T ld(¢/ (%)
j=0

wo(X) :=ZM <000, VxeSs. (16)

Then there exists a unique solution f : S — X of the functional equation

fle(x) = d(x)f (x) + Yo (x) (17)
with f (x) € cl(F(x) 4+ wo(x)B) for x € S.
Proof. Since B is balanced, by (14) we have

Yo (x) n bo®) o

1
—F(p(x)) S F(x) +

, €Ss.
d(x) dix)  |d()|
So, it is enough to use Theorem 2.1, with ¥ (x) := ‘Z"(i’)‘) a(x) := ﬁ and b(x) := W forx eS. O

T ld@l

Remark 2.3. The sum of two nonempty closed subsets of X is not necessarily a closed set, but if A is closed and D is compact,
then A+ D is a closed set. Therefore, if B is a compact set and the values of F are closed sets, then in Theorem 2.1 (respectively,
in Corollary 2.2) we get the statement with f (x) € F(x) + w(x)B for x € S (respectively, f (x) € F(x) + wo(x)B forx € S).

The next corollary contains a stability result for Eq. (6) that corresponds to [25, Theorem 2.1].

Corollary 2.4. Let (10) be valid and g : S — X satisfy
a(x)g(p(x)) —g(x) — ¥ (x) € b(x)B, Vx€S.
Then there exists a unique solution f : S — X of Eq. (6) with f (x) — g(x) € w(x)cl(B) for x € S. Moreover, for each x € S,

fx) = nlingo[an_1(X)g(¢“(x)) + sp_1(®0)]. (18)

Proof. Let F : S — 2% be given by F(x) = {g(x)} for x € S. Then (8) and (9) hold. According to Theorem 2.1, there is a
unique solution f : S — X of (6) with f(x) € cl(F(x) + w(X)B) = g(x) + w(x)cl(B) for x € S. Condition (18) follows from
the formof @ (x). O

Using an approach analogous to that of the proof of Corollary 2.2, we deduce from Corollary 2.4 the following stability
result generalizing [25, Theorem 2.1].

Corollary 2.5. Suppose that d : S — K\ {0}, by : S — [0, 00), ¥0,8 : S — X,

g(px) —d(X)g(x) — Yo (x) € bo(X)B, Vx €S, (19)

and (16) holds. Then there is a unique solution f : S — X of the functional equation (17) with f (x) — g(x) € wo(x)cl(B) for
x €S.
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Remark 2.6. It is easily seen that, for B := {x € X | ||x| < 1}, Corollary 2.5 gives exactly the same result as [25, Theorem
2.1].

Remark 2.7. Let 0 & b(S) and m € Ny. Then, in the case where
) S(F(p™(x)))|am—1(x)|
& :==sup <
xes b(x)
condition (10) implies (9); in fact, we have

S(F(e™ (")) am-1(¢" ()]
b(e" (X))

0, (20)

b(@" (X)) |an—1(x)| = S(F(¢" ™ (X)) |ansm—1(%)]
and therefore
SF(@" ™ XN tnm-1X)] < Elca(®)]
forx € S, n € Ny. In particular, (20) holds, with m = 0, when sup,s § (F(x)) < oo and infyes b(x) > 0. Analogously, if

_ S(F(e())]dm—1(p(x))]
TTETT ey % =
(where d_1(x) := 1and di(x) := d(¢*(x))dy_1(x) for k € Ny, x € S), then

S(F(p(@" N dm1(9(@" ()| bo(e™ ™ (X)) S(F(e™'(x)

bo(¢™(¢"(x))) "ﬁm 1d(¢/(%))] lﬂg |d(¢/ (x))]
j=0 =

forn € Np, x € S, which means that (15) follows from (16). As in the case of condition (20), inequality (21) holds, with
m = 0, when sup,.s 6(F(x)) < oo and infyes b(x) > 0.

We finish the paper with an example of the application of Theorem 2.1 in the investigation of selections of set-valued
maps G : T — 2X satisfying the following linear inclusion in two variables:

G(x*y) C aG(x) + bG(y) + ¢y + D, (22)

where D is a fixed convex and nonempty subset of X, co € X, » : T> — T is a binary operation (in a set T # @) that is square
symmetric (i.e., (x *y) *x X xy) = (xxx) x (yxy) forx,y € T),and a, b € K. Clearly, the mapping p : T — T, p(x) = x*x x
for x € T, is an endomorphism of the groupoid (T, x), whence

Pl xxy) = p"x)*p"(y), Vx,yeT, neN. (23)

Let (P, +) be a commutative semigroup, «, 8 : P — P be endomorphisms witha o 8 = B o « (e.g.,« = " with some
n € Nyp),and yp € P.Then * : P> — P, givenby x * y := a(x) + B(¥) + yo forx, y € P, is square symmetric. Therefore, the
next two corollaries complement and/or correspond to Theorem 1.1 and some results in [ 14,8,24,16,15,17,10].

Corollary2.8. et K=R,a>0,b>0,a+b>1,SCT, p(S) CS,G:S— 2Xsatisfy (22) for x,y € Swithxxy € S, and
8(D) < oo. Suppose that lim inf,,_, .o (a + b) "8(G(p" (x))) = 0 and the set G(x) is convex for each x € S. Then there is a unique
functiong : S — X with

g(xxy) =ag(x) +bg(y) +cy, Vx,y€eS, xxy€S, (24)
and
gx) ec(Gx)+ (a+b—1)7'D), Vxes.

Proof. Write F(x) :== G(x) + (a+b — 1)"!(co + D) forx € S. Then

F(x+) € aG() +bG() + co + D + ———(co + D)

a+b—-1
= aF(x) + bF(y), Vx,yeS, xxyeS. (25)
Hence
R €~ F) + —Fx) = F(x), Vxes.
a+b “a+b a+b
Let

®D,(x) = (a+b)"c(F(p"(x))), Vx€S, neN.
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Then, in view of Theorem 2.1 (with ¢ := p, ¥ () := 0, a(x) := (a + b)~!, and B := {0}), the set

D(x) = ﬂ @, (x)

n=0
has exactly one point for each x € S, the functionf : S — X, given by f(x) € 5()() satisfies f (x) € cl (F(x)) forx € S, and
(pn+1(x) - (P,,(X), Vx € S, ne No.
Note that the last inclusion yields

lim 8(®,(x)) =0, VxesS. (26)
n—oo

Take x,y € S withx %y € S. Since, by (23) and (25),
D(x*xy) € ad,(x) + bdy(x), Vn € Ny,

we have

fxxy) €[\ @alxxy) S [ )(@Pn(x) + by (y)) =: H.

n=0 n=0
Further, in view of (7) and (26),
lim §(a®n(x) + bPy(y)) =0,
n—oo

whence §(H) = 0, which means that H = {f (x x y)}. Consequently
fxxy) =af (%) + bf (),

because (in view of the definition of H)
af () + bf (y) € a®(x) + b (y) C a®(x) + bPy(y)

for n € Ny and therefore af (x) + bf (y) € H.

Now, it is easy to check that g := f — (a + b — 1)~ ¢ satisfies (24) for x,y € S withx xy € S. To complete the proof
it is enough to notice that the uniqueness of g follows from the statement concerning uniqueness in Theorem 2.1. Namely,
observe that for each function g : S — X satisfying (24) forx,y € S withx xy € S, the functionf :==g + (a+ b — 1)
fulfils

@+b7'f(p(x) =f(x), VxeS. O

Corollary 2.9. [et K=R,a>0,b>0,a+b>1,SCT,p(S) SS,g:S— X, and

gxxy) —ag(x) —bg(y) —coeD, Vx,yeS, xxyeS.
Then there exists a unique function f : S — X such that (24) holds and
fx)—g®x € (@+b—1)"'c(D), VxeS.

Proof. Define G : S — 2X by G(x) := {g(x)} forx € S and use Corollary 2.8. O

Remark 2.10. Since e : X> — X, x ey := ax + by + o, is square symmetric, Eq. (24) can be considered to be an equation of
homomorphism of the square symmetric groupoids (T, x) and (X, e).
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